Appendix D
B-Plane Geometry, Coordinates and Targeting

The derivation of B-plane coordinates is described in the classic JPL reports, “A Method of Describing
Miss Distances for Lunar and Interplanetary Trajectories” and “Some Orbital Elements Useful in Space
Trajectory Calculations”, both by William Kizner. The following diagram illustrates the geometry of
the B-plane coordinate system.
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The arrival asymptote unit vector S is given by
C0So, COScxr,,
S={coss_sina,

sing,,

where 6, and «, are the declination and right ascension of the asymptote of the incoming hyperbola at
the arrival planet.

B-plane calculations

This section describes the conversion of inertial coordinates of an arrival or departure hyperbola to
fundamental B-plane coordinates and vectors.
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where r and v are the spacecraft inertial position and velocity vectors and x is the planet’s gravitational
constant.
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Techniques for B-Plane targeting

This section describes several techniques for using B-plane coordinates to target to specific planetary or
moon encounter conditions. These targets are usually formulated as equality mission constraints which
are enforced while solving the trajectory optimization problem.

user-defined B-plane coordinates

For this targeting option, the two nonlinear equality constraints enforced by the nonlinear programming
(NLP) algorithm are

(B-T)p—(B-T)U=O (B-R)p—(B-R)u=O

where the p subscript refers to coordinates predicted by the software and the u subscript denotes
coordinates provided by the user. The predicted B-plane coordinates are based on the planet-centered
flight conditions at closest approach.

targeting to user-defined entry interface (EI) conditions with user-defined inclination

For this targeting option, the following equations can be used to determine the required B-plane
components based on the user-defined El targets. These targets are the inertial flight path angle and
altitude relative to a spherical planet model.

BT =D, cosé BeR=0Db,sing
where

2ur, cosi
b, =cosy, # +r7 and cosé =
V2 cosJ,

Note that this targeting option could be modified to use a user-defined B-plane angle instead of orbital
inclination at the entry interface.

In these equations, y,, is the user-defined flight path angle at the entry interface, r,; is the arrival planet-

centered radius at the entry interface (sum of planet equatorial radius plus user-defined El altitude) and i
is the user-defined orbital inclination.

Also, these dot product mission constraints can be expressed in terms of the x, y and z components of the
spacecraft’s inertial position and velocity vectors according to

AT B.R_(erXJrryvy)vz—(vf+v§)rZ

2 2 N > 2 [ 2 2. 2
JVZ+V \/vx +V} \/vx +V] 4V

targeting to a planet-centered grazing flyby with user-defined B-plane angle

The general expression for the periapsis radius of an encounter hyperbola at the arrival planet is given

by
F = \7%(«/14r b2y —1)

o0

where the normalized quantities are
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normalized periapsis radius =r, /r,

b, = normalized b-plane magnitude =b_ /r,
V_ = normalized v-infinity speed =v_ /v,,
v, = local circular speed at Mars = [ /T,

r = radius of Mars
M, = gravitational constant of Mars

For a grazing flyby, f, =1 and the normalized B-plane distance or offset is equal to

~ / 2
boo: 1+E

Therefore, the required B-plane equality constraints are computed from

BeT=Db, cosé@ B«R=b, sing

where @ is the user-defined B-plane angle of the arrival trajectory. Please note that the B-plane angle is
measured positive clockwise from the T axis of the B-plane coordinate system. The two equality
constraints for this option are simply the difference between the predicted and required BT and B«R

components.
targeting to a planet-centered node/apse alignment trajectory

This targeting option determines when a spacecraft is simultaneously at a nodal crossing and periapsis of
the arrival planet encounter hyperbola. The B-plane angle required for node-apse alignment is given by

sing, S,
COS¢h,\[S7 +S?

where ¢, =sin™(1/e). This relationship is developed in the thesis of R. H. See.

6=sin?

Also noted in the thesis of R. H. See, the minimum and maximum values of orbital inclination can be
determined from the x and y components of the unit S vector according to

i :cos‘l(«/SAX2 +§j) i :cos‘l(—JSAX2 +Sy2)
For an arrival hyperbola that lies in the equatorial plane, the following condition must be true
i =0 §f+§§ =1

Furthermore, if the z component of the incoming v-infinity vector is positive, V, >0 , an equatorial
areocentric orbit is not possible.
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The relationship between orbital inclination i, B-plane angle ¢ and asymptote declination § of an
incoming or outgoing hyperbola is given by cosi =cosé&coss . The following is a contour plot
illustrating the achievable inclination as a function of B-plane angle and declination.

Achievable Orbital Inclination
as a function of asymptote
declination and B-plane angle
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