
Orbital Mechanics with MATLAB

page 1

Appendix C

Time Scales

This appendix is a brief explanation of the time scales used in the npoe MATLAB script.

Coordinated Universal Time, UTC

Coordinated Universal Time (UTC) is the time scale available from broadcast time signals. It is a

compromise between the highly stable atomic time and the irregular earth rotation. UTC is the

international basis of civil and scientific time.

Terrestrial Time, TT

Terrestrial Time is the time scale that would be kept by an ideal clock on the geoid - approximately, sea

level on the surface of the Earth. Since its unit of time is the SI (atomic) second, TT is independent of

the variable rotation of the Earth. TT is meant to be a smooth and continuous “coordinate” time scale

independent of Earth rotation. In practice TT is derived from International Atomic Time (TAI), a time

scale kept by real clocks on the Earth's surface, by the relation TT = TAI + 32s.184. It is the time scale

now used for the precise calculation of future astronomical events observable from Earth.

TT = TAI + 32.184 seconds

TT = UTC + (number of leap seconds) + 32.184 seconds

Barycentric Dynamical Time, TDB

Barycentric Dynamical Time is the time scale that would be kept by an ideal clock, free of gravitational

fields, co-moving with the solar system barycenter. It is always within 2 milliseconds of TT, the

difference caused by relativistic effects. TDB is the time scale now used for investigations of the

dynamics of solar system bodies.

TDB = TT + periodic corrections

where typical periodic corrections (USNO Circular 179) are

()

()

()

()

()

()

0.001657sin 628.3076 6.2401

0.000022sin 575.3385 4.2970

0.000014sin 1256.6152 6.1969

0.000005sin 606.9777 4.0212

0.000005sin 52.9691 0.4444

0.000002sin 21.3299 5.5431

0.000010 sin 628.3076 4.24

TDB TT T

T

T

T

T

T

T T

= + +

+ +

+ +

+ +

+ +

+ +

+ +()90 +

In this equation, the coefficients are in seconds, the angular arguments are in radians, and T is the

number of Julian centuries of TT from J2000; T = (Julian Date(TT) – 2451545.0) / 36525.

Orbital Mechanics with MATLAB

page 2

The following is the MATLAB source code that performs these calculations.

function jdtdb = utc2tdb(jdutc)

% convert UTC julian day to TDB julian day

% input

% jdutc = UTC julian day

% output

% jdtdb = TDB julian day

% 'Reference Frames in Astronomy and Geophysics'

% J. Kovalevsky et al., 1989, pp. 439-442

% Orbital Mechanics with MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

dtr = pi / 180.0;

deltat = find_deltat(jdutc);

% TDT julian day

corr = deltat / 86400.0;

jdtdt = jdutc + corr;

% time argument for correction

t = (jdtdt - 2451545.0) / 36525.0;

% compute correction in microseconds

corr = 1656.675 * sin(dtr * (35999.3729 * t + 357.5287))...

 + 22.418 * sin(dtr * (32964.467 * t + 246.199))...

 + 13.84 * sin(dtr * (71998.746 * t + 355.057))...

 + 4.77 * sin(dtr * (3034.906 * t + 25.463))...

 + 4.677 * sin(dtr * (34777.259 * t + 230.394))...

 + 10.216 * t * sin(dtr * (35999.373 * t + 243.451))...

 + 0.171 * t * sin(dtr * (71998.746 * t + 240.980))...

 + 0.027 * t * sin(dtr * (1222.114 * t + 194.661))...

 + 0.027 * t * sin(dtr * (3034.906 * t + 336.061))...

 + 0.026 * t * sin(dtr * (-20.186 * t + 9.382))...

 + 0.007 * t * sin(dtr * (29929.562 * t + 264.911))...

 + 0.006 * t * sin(dtr * (150.678 * t + 59.775))...

 + 0.005 * t * sin(dtr * (9037.513 * t + 256.025))...

 + 0.043 * t * sin(dtr * (35999.373 * t + 151.121));

% convert corrections to days

corr = 0.000001 * corr / 86400.0;

% TDB julian day

jdtdb = jdtdt + corr;

Orbital Mechanics with MATLAB

page 3

Leap seconds

The difference between International Atomic Time (TAI) and Universal Coordinated Time (UTC) is the

number of current leap seconds. International Atomic Time (TAI, Temps Atomique International) is a

physical time scale with the unit of the SI (System International) second and derived from a statistical

timescale based on many atomic clocks. Coordinated Universal Time (UTC) is the time scale available

from broadcast time signals. It is a compromise between the highly stable atomic time and the irregular

earth rotation. UTC is the international basis of civil and scientific time.

The value of deltat in the code is read and interpolated from a simple text file with the following form

2433647.50, 29.5700

2434012.50, 29.9700

2434378.50, 30.3600

2434743.50, 30.7200

2435108.50, 31.0700

2435473.50, 31.3500

2435839.50, 31.6800

2436204.50, 32.1800

2436569.50, 32.6800

In this file column one is the Julian day and column two is the value of t in seconds. This file should

be updated as leap seconds are added by time keeping services.

Here’s the MATLAB source code for the routine that computes the value of t .

function deltat = find_deltat(jdutc)

% find delta-t corresponding to utc julian day

% input

% jdutc = utc julian day

% input via global

% jday_dt = array of utc julian days

% delta_t = array of leap seconds

% output

% deltat = delta-t (seconds)

% Orbital Mechanics with MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global jday_dt delta_t

% length of data arrays

ndata = length(jday_dt);

if (jdutc <= jday_dt(1))

 % day is <= beginning of current data

 deltat = delta_t(1);

Orbital Mechanics with MATLAB

page 4

elseif (jdutc >= jday_dt(ndata))

 % day is >= end of current data

 deltat = delta_t(ndata);

else

 % find data within table

 for i = 1:1:ndata - 1

 if (jdutc >= jday_dt(i) && jdutc < jday_dt(i + 1))

 deltat = delta_t(i);

 break;

 end

 end

end

