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Abstract. We review starting formulae and iteration processes for the solution of Kepler’s equation, and
give details of two complete procedures. The first has been in use for a number of years, but the second is
entirely new. The new procedure operates with an iterative process that always gives fourth-order
convergence and is taken to only two iterations. The error in the resulting solution then never exceeds
7% 107*° rad.

1. Introduction

Kepler’s equation has aroused fresh interest during the past quarter of a century,
reflecting the demands of the space age and the potential of the digital computer. In
the authors’ monograph on the subject (Gooding and Odell, 1985), 19 papers are
cited from this period, of which seven appeared in the Journal of the Astronautical
Sciences and seven in Celestial Mechanics; one of the latter is the recent paper by
Shepperd (1985), which is not confined to Kepler’s equation. The present paper is a
greatly shortened version of the monograph, copies of the latter being available on
request.
The conventional form of Kepler’s equation may be written

E—esin E=M, (1)

where M is the mean anomaly of a body in an elliptic orbit of eccentricity e, and E is
the corresponding eccentric anomaly; we shall also find it convenient to write the
equation as

J(E)=0,
where
f(Ey=E—esin E— M. (2)

The elliptic interpretation of Equation (1) breaks down when the orbit becomes
parabolic (as e~ 1 with a fixed perigee), since, at any given time, both sides of the
equation are zero in the limit — it is now common practice to cover orbits of
arbitrary eccentricity by working with a generalized version of Kepler’s equation
and universal variables (as discussed in Section 5 of this paper). The interpretation is
valid for a rectilinear ellipse (for which e = 1), however, and there is in any case
no mathematical breakdown of the equation when e = 1, since f(E) remains strictly
monotonic, with a unique E corresponding to any given value of M. To obtain a
solution procedure that is accurate for all ellipses, therefore, it is legitimate to
demand that the procedure be valid for e=1. The main difficulty inherent in
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Kepler's equation, viz the vanishing of f*(E) when e = 1 and M is a multiple of 2, is
then automatically resolved.

Direct analytical solutions of Kepler's equation are in general very inefficient to
compute. This applies, in particular, to the classical power-series expansions and to
the rather complicated quadrature solution found by Siewert and Burniston (1972).
Thus iterative solutions by trial and error (which is arguably no less ‘direct’ or
‘analytical’) retain their virtual monopoly. Recent papers, such as that of Danby and
Burkardt (1983), have focused separate attention on these complementary com-
ponents of an iterative procedure, and the present paper is no exception: Section 2 is
devoted to starting formulae, i.e. to the trial component, and Section 3 to methods
of 1teration, ie. to the feedback reduction of error. Section 4 puts the components
together and describes two complete solution procedures that have been in-
corporated in Fortran functions developed at Farnborough, listings of which are
appended. The first procedure has been in use for a number of years, though not
previously published. The second procedure is entirely new and should provide a
particularly accurate, rapid and generally applicable solution for Kepler’s equation:
it operates with a fixed number of iterations, viz. 2, and for 0 <e <1 and any M, the
error in the solution never exceeds 7 x 10713 rad.

2. Starting Formulae

A number of authors, in particular Smith (1979), Broucke (1980) and Bergam and
Prussing (1982), tabulate the starting formulae that they consider of most interest for
intercomparison purposes, and we do the same in Table 1. This re-lists the 12

TABLE I
Comparison of starting formulae

N Formula for Eg O (error) (a) (b) (c) (d)
S, M e N v
S, MiesmM &2 \/ v
Sy M+iesinM(l +ecosM) &3 \/ \/
Sy M+e e \/ *

S M+esinM/{1—sin(M+e)+sin M) e’ * N4
S¢ M+eln—Myl+e e J

S;  Mm{M/(l—e), S,. S} e J

Sg  Sy+Aet(n—S,); A=1/20n e v

S, M +esin M/l —2ecos M +e?)l? e* v J

S0 See Equations (6) to (8) 1 N J

. See Lquations (10) and (11) & v i N4 J
§,, See Equations (20). (25) to (27) e V4 v J

(a) Free of ‘slow convergence’ phenomenon
(b) Always Newton—Raphson convergent
(c) Vahd without ‘range reduction’
(d) Smoothly portable
« For §, and §;, the avoidance of range reduction 1s trivial
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different ‘starters’ from Gooding and Odell (1985), six of which were taken from
other authors’ papers. Supplementary information in Table 1 is as follows. Col. 3
gives the order of magnitude of the error in the starter, as a power of e. Col. 4
indicates, by a tick when appropriate, that the starter will always exploit the better-
than-linear convergence of the Newton—Raphson and higher-order iteration pro-
cesses; this ‘freedom from slow convergence’ exists so long as the starter provides
good initial values when f'(E) approaches zero. A tick in Col. 5 indicates that, with
this starter, the Newton—Raphson process is guaranteed to converge, albeit slowly
perhaps. Col. 6 is ticked when the starting formula does not demand a preliminary
reduction to get M in the range (0,n). Finally, Col. 7 ticks the starters that are
‘smoothly portable’, and this is a concept worth some immediate comment.

Two obvious desiderata of a starting formula for the solution of Kepler’s
equation, and of a computing procedure in general, are that it should be as fast and
accurate as feasible. A third desideratum is that it should be as aesthetically pleasing
as possible, with arbitrariness held to a minimum; this desideratum is contravened if,
as applies to many procedures for solving (1), the starter is composed of a number of
sub-formulae, to be used in different regions of the (e, M)-plane, patched together in
a manner that is essentially ad hoc. The concept of ‘smooth portability’ may be
regarded as a fourth desideratum that is closely allied to the third. What is desired
amounts to the requirement that any patching should be continuous, down to the
quantum level of the word-length of an arbitrary computer, and that this continuity
should apply not merely to the sub-formulae themselves but also to their first
derivatives; in particular we require that if the starting formula only applies to the
range (0, ) for M, then it should map this range onto (not just into) (0, ), so that
range reduction is continuous (continuity of first derivative may then be seen to be
an automatic consequence of the symmetry). The significance of a starter’s smooth
portability in this sense is that, in conjunction with an iteration process that
operates for a fixed number of iterations, the complete procedure is automatically
well adapted to any computer, since even if it terminates without exploiting the full
accuracy of a particular machine, at least the output E (and its derivatives with
respect to e and M) will be essentially continuous.

The first three starters are defined by the first three truncations of the power-series
expansion of E — there can be little point in ever going to more than three terms, in
particular because the series is not convergent for all e < 1. The use of one of these
starters, with the Newton—Raphson iterator, has been the standard method of
solving Kepler’s equation for many years, but it has long been recognized that
convergence is not guaranteed. Full analysis of iteration from S,, by Gooding and
Odell (1985), shows that the boundary between convergence and divergence is
marked by oscillation with a two-iteration cycle, for which the condition is given by
the equation

e=sinE, /sin QE, —tan E,),

where E, is the value of E after one iteration (and hence any odd number of
iterations). The minimum value of e, such that this equation has a solution for E, is
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about 0.9733, the value of M that leads to this solution being about 0.246 rad; for
any e > 0.9733 there is a range of values of M, roughly centred on 0.246 rad, for
which the Newton—Raphson iterator diverges, the limiting range (where e = 1) being
from zero to about 0.493 rad. With the starters S, and S5, the limiting values of e for
Newton—Raphson divergence are much higher, being about 0.9936 for S, and 0.9972
for S;.

It was remarked by Smith (1979) that the starter M + e (for 0 <M <) would
always lead to convergence under Newton—Raphson iteration, and later authors
have regularly referred to this fact, so we include this starter as S, in Table 1. Smith
found S, superior to all the other starters he considered, with the exception of the
one we denote by Ss, given by

esin M

S;=M :
> +1—sin(M+e)+sinM

Ss arises as a secant-generated combination of S; and S,, this beiné a natural
combination since S; <E <§, (for 0 <M <7); it is not free of Newton—Raphson
divergence, however (though Smith seems not to have recognized this), which
occurs for values of e greater than about 0.9995. The source of the trouble is the
same as for S;, S, and S;, viz. that if 0 < S < E (with 0 < M < E < 7), then E, (the
estimate of E after one iteration) will exceed E (the true value) and sometimes be
much bigger than n. If 0 <E < S <m, on the other hand, then E<E, <S§ and
convergence is guaranteed. On this basis, the simplest possible starter for which
convergence is certain (with 0 <M < 2x) is = itself. It would be inefficient to iterate
from m, however, so for our next starter we use the associated E,, given by one
Newton—Raphson iteration, writing

e(n — M)

Se =M +
6 1+e

(3)

We also have S¢ =(M 4+ en)/(1 + e), which exhibits it as a weighted average of S,
(= M) and =. This starter does not appear to have been given explicitly before, but
the quantity concerned was introduced by Broucke (1980) as an upper bound for E
over therangem — (e+ 1) <M <.

The development of S¢ suggests two further starters not previously presented.
Broucke was very close to the first of these, since his upper-bound analysis led him
to

Min(M/(1 —e), M + e, n).

Having recognized S¢ as an upper bound, therefore, he might well.have given
instead (for 0 < M < =) the starter we write as

S, =Min (M/(1 — e), M + e, (M + en)/(1 + ¢)).

Again, since Equation (3) is in the form

S¢=8;+ le(n —8S,),
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we are led to consider potentially superior starters of the form
Sg=S;+ Le*(n —S;),

the rationale for taking le* (rather than Ae®) as a coefficient being that, although S,
is only correct to O(e?), it is undesirable to corrupt it with an excessive term in e>.
The choice of 4 requires some care: if it is too small, then for e close to 1 and M of
the order 10™% to 1072 rad, the Newton—Raphson process will still be in danger of
diverging; if 4 is too large, on the other hand, then for e close to 1 and extremely
small M, Sg will so over-estimate E that convergence becomes impracticably slow. A
suitable compromise value was found to be 1/20x.

The origin of ‘slow convergence’ with S, S¢ and Sy is that, for these starters, zero
M does not generate zero S when e# 0. An obvious way to remedy this is to
consider only starters of the form M + (e sin M)G(e, M) for suitable functions G. The
starters S, S,, S5 and S5 are of this form, but all these can lead to Newton—Raphson
divergence, the avoidance of which is in conflict with the avoidance of slow
convergence. One approach to the dilemma is to take the starter in this form, but
with G having a convenient denominator such that 1/G(1,0) vanishes but (e
sin M)G(e, M) has a finite limit at (1,0). The first candidate to suggest itself for
G(e, M) is (1 — e cos M)~!, but this gives cot+M for G(1, M) sin M, and so violates
the requirement for a finite limit. This starter would not even have novelty, since it is
identical with the outcome (E,) of one Newton—Raphson iteration from the starter
S, — the divergence associated with S, can in fact be attributed directly to the
infinite limit.

The starter just rejected may be written as M + o, where o= (e sin M)/(1 —e
cos M), and from this may be derived the more complicated starter, correct to O(e?),
M + o(1 — 2a?), which is considered by Smith (1979), Ng (1979), Broucke (1980) and
Danby and Burkardt (1983). This also has an infinite limit, however, and again lacks
novelty since, as pointed out by Danby and Burkardyt, it is just the E, resulting from
an iteration of the process we shall consider in Section 3 and attribute to Chebyshev.

The next idea is to reduce the power of the denominator in G(e, M) by introducing
a square root. The obvious candidate is (1 —ecos M)*?, which gives \/E (rad) for
the limit of G(1, M) sin M. The starter given by this G(e, M) is free of Newton—
Raphson divergence, though not of slow convergence, and we exclude it from Table
1 for only one reason, viz. that there is a very similar starter which is superior. This
is given by

e sin M
(1 —2e cos M + e?)/?

Se=M + 4)

The function G(e, M) associated with (4) may be seen to have, as its power-series
expansion in e, the Legendre series of general term eij (cos M). This matches the
series that formally solves Kepler’s equation as far as the e term, so that the error in
Sy is O(e*). The limit of G(1, M) sin M is now 1 rad. As S, is the starter-component
of the first of the two Kepler-solution procedures that we describe in detail in
Section 4, we give it no further attention here.
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The only defect of S, is the one suffered by all the starters so far considered, viz.
the propensity for slow convergence when (e, M) is close to (1,0). Because f'(E) is
zero at this point, fast convergence is only possible in its vicinity if a starter is
employed that reflects the true behaviour of E. It was noted by Ng (1979) that E
behaves like the cube root of 6 M when (e, M) is close to (1,0), and the remaining
starters we consider all reflect this fact.

The simplest cube-root-reflecting starter is just \3/@, which is obviously ap-
propriate when e=1 and M ~0, so that f(E)= E*/6 + O(E?). In fact it works very
well for any e(<1) and over the whole basic range of M(0 <M <), though it is
obviously not very efficient in general. To get a more efficient starter, we follow Ng
in neglecting E° and higher powers of E, in which case Equation (1) may be written

E? +3gE —2r =0, (5)
where

q=2(1 —e)/e, r=3M]/e (6)

in the notation of Ng (1979). Equation (35) is the classical cubic equation in reduced
form (no E? term) and Ng gave its solution as

[r+@® +r2) 21" + [r = (@ +r2)2 ],

This may be better expressed, however, both to avoid a pair of cube roots where
only one is necessary and also to avoid (when g* < r?) the subtraction of almost
equal quantities. We define

1/3
s=L?+¢*)?+r]", (7
therefore, and then write

Sio=s—1, (8)
S

Given the different merits of S, and S,,, we now looked for a formula, intricate if
necessary, that would combine these merits. Returning to our consideration of
starters of the form M + (e sin M)G(e, M), in which a particular candidate for G(e, M)
was (1 —ecos M)~ 1% we observe that if the square root is replaced by a cube root,
then near (1,0) the starter behaves 1ike\3/m. Thus behaviour of the form\3/6_M 1s
given by taking G(e, M) as \3/5 (1 —ecos M)~ '3 The resulting starter is like S,
(and unlike S,,) in being valid, in a single formula, over the complete range of M
and for any e(< 1), but some refinements are possible. First, to make it (like S,)

agree with the power series for E to terms in e?, we replace \3/§ by a more
complicated numerator. A natural approach is to write

1+32e cos M +3e*(1 + 19 cos2M) + e3(a+ ff cos M +7 cos 2M)

Gle, M) = (1 —e cos M)'/3
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where o, # and y are disposable constants (multiplying the fourth power of e in the
starter) that are assigned with the overriding object of restoring the right numerator
for (e, M) near (1,0). This condition leads to

oc—i—ﬁ-l—y:\}ﬁ—%,

and two more conditions on the constants can be obtained by making the starter

-approximately correct for two additional values of M (with e=1), the obvious

values being 7 and 3.

The other refinement we make, before formally labelling our starter as S, is
more important. It arises because 1 — e cos M is not quite the right quantity to be
under the cube root in the denominator of G(e, M). By splitting 1 — e cos M into the
sum of e(1 —cos M) and 1 — e, we get

1 —ecos M~r*+1q 9)

when ¢ and r, given by (6), are both small. But if ¢°><r?<q(<l), we may expand‘
(7) to give

3
5= 1+ -
12r2

and on substitution in (8) it becomes clear that the dominating term 7q in (9) may be
excessive: it was found, in practice, to be a source of slow convergence in cases such
as (e, M) = (0.9999, 0.0001). However, ¢>/8 (in place of 3q) should give no difficulty,
the significance of this being that

1 —g cos M~ #r* +iq°
if
g=1—(1-¢).

The only problem with 1 —g cos M is that it behaves like 1 — 3e cos M when e is
small. What we require, for the coefficient of cos M, is a linear combination of e and
g, and the combination e + (1 — ¢)g is suitable if ¢ = (1 —e)?, since if e~ 0 this
approximates to e, with a matching first derivative, and if e & 1 it approximates to g,
with matching first and second derivatives. The use of o leads to
1 —e[1+ee,(1+e,)?] cos M for the quantity under the cube root of the desired
starter, where e; = 1 — e, but there is an induced effect on the numerator of G(e, M),
if the starter is to remain correct to O(e?). We finally get
esin M[1+%ecos M + 3se? (1 — 48 cos M + 19 cos 2M) + e3 (o + f cos M + y cos 2M)]

Sy =M+ 10
H {1 —e[1+ee,(1+e,)*Jcos M}'3 (19

where

ex=1-¢,  (B,7)=—2J3-5(1,—-9,2); (11)
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a, f and y have convenient values, only their sum having a precisely determined
value.

When S, is substituted for E in (1), the (numerically) maximum residual is about
0.26 rad and occurs at (e, M)=(1,2.6 rad). This is greater than the maximum
residual with Sy (0.16 rad, occurring at (1,0)), but it occurs at a point at which there
are no convergence problems. The starter qualifies as the best of all those in Table 1,
in receiving a full quota of ticks, and we would be recommending it as a standard
all-purpose starter, for use in particular whenever S, is inadequate, if it were not for
the discovery of a final starter (S,,) that is much faster to compute and has fewer
arbitrary features. The description of this is deferred to Section 4.

3. Iterative Processes

Newton’s method for locating the root of an equation, referred to here as the
Newton—Raphson process, is so much better known than any other method that it is
worth pointing out that, in addition to the more advanced processes that stem from
the Newton—Raphson, there are also more elementary methods that can be used in
the solving of Kepler’s equation. The secant method and regula falsi (the method of
false position) are examples, and so is the bisection method. The latter iterates by
bisecting the interval in which E must lie, starting (if 0 < M <r) with the interval
(0, ) and testing the mid-point of the current interval during each iteration. After n
iterations the maximum error in the best estimate of E is /2" %!, so 34 iterations
would give an accuracy of 10~ 1° rad; this is not as inefficient as it may seem, since
the computation of each sin E (to test-substitute in (1)) will be very fast if auxiliary
tables of sin E and cos E are stored in the computer for E =n/2" with i=2,3,...,n.
A method that is rather less primitive, and particularly well adapted to use with
hand calculators of the Hewlett-Packard type, iterates from E; to E;,; via the
formula

E, . ,=M+esinE;

the obvious starter to use is S,, so that E,= M. The process converges for all e
(< 1), but convergence becomes infinitely slow if e =1 and M approaches zero (or
any multiple of 2n).

The last-mentioned process gives linear convergence, i.e. of first order only; thus, if
¢; is the error in E,, ¢, is of order e'e,, so that (for example) if e < 0.1, each successive
iteration gives at least one more significant figure in E. The advantage of the
Newton—Raphson process and the more advanced processes that stem from it is that
their convergence is of second order at least, except when f(E)~0 and an
inadequate starter is in use. Convergence of order k means that ¢, , is of order &* so
that, roughly speaking, the number of significant figures in E is multiplied by k
during each iteration. The concept will not be analysed further here, as Danby and
Burkardt (1983) give a good account, but it must be emphasized that even high-
order convergence reverts to linear if f'(E)~ 0 and the starter is poor.
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To simplify the notation in the following analysis of generalized Newton pro-
cesses, we confine ourselves to the consideration of a single iteration. We suppose
that f(x) is a given monotonic (and continuous) function and that an approximation
to a root of f(x) =0 is given by x =¢. We denote f(¢) by # and suppose that the
derivatives %', n”,..., n® (for some k in due course to be associated with con-
vergence of order k + 1) are also available; for the particular f of (2), of course, all the
higher derivatives are known at once from # and #'. The problem is simply to use #,
n' etc to derive a value of § such that £ 4+ 6 is much closer than ¢ is to the root of
f(x) = 0. We note that, from the assumptions about f, the inverse function (f ~') is
defined, and we denote its derivatives, at f ~1(y) =&, by &, & etc; thus,

=1/, & =-—=n"/(n) etc

From the Taylor expansion of f(¢ + ), we see that we should naturally like 6 to
be a root of

n+né+in’é6*+--- +%n“‘)5" =0. (12)
For k=1, we immediately have the Newton—Raphson formula, with its quadratic
convergence, but for higher values of k we have to locate the appropriate root of a
polynomial. Before taking this further, however, we consider the much simpler
analysis arising from the Taylor expansion of f ~*(0)=f~'(n — n) which, if it were
exact, would give the root of f(x) =0 at once. If we take this expansion to be our
&+ 0 in fact, then (on subtracting ¢ from both sides of the resulting equation) we
have

1
6= —En+3En = kW () (13)

For k=1, we again have the Newton—Raphson formula, since &' =1/'.
For k=2, (13) gives (on rewriting # as f, to produce a more familiar expression)
A (14

S ’

which is equation 20 of Danby and Burkardt (1983). Taking k = 3 gives, similarly,
their equation 22. The iterative process defined by (14) is often quoted in the
literature: Bergam and Prussing (1982) describe it simply as ‘second-order Newton’
whilst Ng (1979) attributes it to Schroder, and Broucke (1980) to Chebyshev; Traub
(1961) has some historical notes on the general approach, which he traces back to
Euler. In spite of this pedigree, the cubic convergence given by (14) is generally
inferior to that given by Halley’s formula, which we shortly introduce as equation
(17), since polynomials usually give better representations of naturally occurring
functions than they do of the inverses of these functions. This is obviously true for
the Kepler function, and herein lies a complete explanation of the ‘strange attrac-
tors’ of Broucke (1980). The most striking example of ‘strange behaviour’ is when
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(14) gives 6 =0, from ff” + 2f"* =0, and hence a false solution of Kepler’s equation.
A full analysis of this is given by Gooding and Odell (1985), who show that the
simplest example of the phenomenon occurs with the starter S, (E, = M), for (e, M)
such that cos M = e = ./2/3 ~ 0.8165; then —ff"" = 2f'*> = 2/9 and (14) falsely implies
that the starting value is already a solution! Neither the Halley process nor even the
bare Newton—Raphson process has any difficulty with such examples. We cannot
too strongly stress the advantages of the Halley process over the Chebyshev process,
since the difficulty in getting the message across can be seen from the recent paper
by Peters (1984).

We now return from (13) to the harder-to-solve, but more rewarding, (12). For
k =2, we have

n+né+3in'6*=0, (15)

for which the schoolboy’s solution is available if we are willing to extract a square
root and select a sign. Another, more general, approach is available, however: we
denote the Newton—Raphson solution of (12) by d,,s0 §; = —n/r’, and linearize (15)
by rewriting it as

n+o(n +31n6,)=0;

this is an approximation, but nothing has been lost since (15) was already only an
approximation of (12). We denote the solution of (16) as ¢,,, for a reason that will
become apparent, writing (with f for #)

f
S1p= ———T 16
12 f/ + %51f” ( )
thisis Equation (17) of Danby and Burkardt (1983), and their Equation (18) follows by
the natural extension to k=3, using ,, to generate a linear equation in what we
call 8;,3. Substituting for 6, in (16) we get a self-contained formula for an iteration
process with cubic convergence, viz.

S

[ =3
This is the formula of Halley (1694) for iterating the root of an equation; it has often
been rediscovered, and given other names, as remarked by Traub (1961). It is
interesting to note that it can also be obtained, perhaps more naturally, from the
root of the unique bilinear function (if #’ # 0) that passes through (¢,#7) and
matches the derivatives #” and n".

The basis for the notation 0,,0,,,9,,5 etc is that any existing J,9,, say, can be
used to linearize (12) so that a new ¢ is obtained from

(17)

5122_

1
n+ 5(71’ LU SR s 1) =0,
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where n <k. Thus a chain of suffices, of the form n;n, ...ny, can be developed such
that 6, with this suffix, is obtained from 6,, with ex =n,n,...n,_,. Clearly n; must
be 1 and n; > 1if j > 1; also n; > n; when j > i, if the development is to be useful. To
judge the possible merit of suffix chains such as 13, 122 etc, we must consider the
order of convergence developed: if O, is the order associated with the suffix chain
ln, ...ny, then O, _, can be evaluated recursively, and it is not hard to see that (with
0,=2)

Oy=min(Oy_, + 1, ny + 1);

thus only the progression d,, d,,, 0;,3,..., can be efficient.

The rationale for proceeding to é,, and beyond is, of course, to obtain the
maximum benefit from one iteration before advancing (if necessary) to the next. This
is particularly appropriate if, as with (2), the computation of higher derivatives is
trivial. The development described does not exhaust the possibilities, however, since
at each stage, say when the suffix chain is about to reach n,, another option is
available: instead of computing the new ¢, with suffix 1n, ...n,, we use the existing
d,, to compute a new #, associated with £+ 6, (as new &) and given by

RSV MEREI AR
ny!
we also compute the corresponding new #’, #” etc as required. In Gooding and Odell
(1985), where the description is amplified with a sketch, this step is described as
‘rectification’. What we are doing is to abandon the original point (£, #), that
certainly lies on the function y = f(x), in favour of a new point that in general does
not, but instead lies on a polynomial curve, of degree n,, that is hyperosculatory to
the function at the original point — the object is to postpone the start of the next
iteration and its computation of entirely fresh derivatives.

After rectification the development of the suffix chain can continue, necessarily
starting with a new 1. Thus the notation extends automatically and we have
unambiguous chains such as 12312123 (two rectifications). To clarify, we observe
that the overall formula for 6,,;, which has the simplest new suffix chain now
available, is given by the combination of an initial Newton—Raphson component
(0, = —f/f') and then, after second-degree rectification, a second Newton—Raphson
component. The rectified f and f’ are given by f+f'6, +1 (762 and f'+f"d,,
respectively, and the overall formula is

S =26
ST =F")
Clearly (18) is another cubic-convergence formula, being a third special case (with

2= —4) of the general cubic formula

_JLM g
S+ =671

(18)

5121 =

5—_—
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that covers (17) and (14), with =0 (for Halley) and i=74 (for Chebyshev)
respectively.

Though 9,,, does not give better convergence than ¢6,,, both being cubic, d,5,
doesdo better than ¢, 5, since the latter is still only cubic whilst the former is quartic. The
overall formula is

fUP =3 f"+321")
fU2 =1 +32f)
which is a special case of the general quartic formula given by Gooding and Odell
(1985). The components of (19) are still both Newton—Raphson, and in looking for
an iterator to associate with our final starter (S;,), we also looked at 0,55, 0,531
and 0,,5,,, in all of which there is at least one Halley component; as we shall see in
Section 4, we selected the d,,5; process.

Though 6,5, does better than 6,,, (quartic convergence as opposed to cubic),
01415 015, etc still only give quartic convergence, not quintic. This is obvious, since
they cannot do better than 6,,.,,, which is defined as the limit of é,,, and hence
represents two distinct iterations of the Newton—Raphson process; but the com-
position of two quadratic iterations must be quartic, if viewed as a single iteration.

(19)

5131 = -

4. Two Kepler Procedures Used at RAE

4.1. THE OLDER PROCEDURE

The earliest procedures used at the Royal Aircraft Establishment, in solving Kepler’s
equation, were based on the starters, S;, S, and S, with iteration by the Newton—
Raphson process, and some computer programs still contain Fortran versions of
these procedures. Since about 1977, however, the most efficient procedure in general
use has been the one listed in Appendix A as the Fortran function EKEPLI1 (this
procedure, like the earlier ones, has also been used with the name EAFKEP); it is
based on the starter Sy, defined by Equation (4), with iteration by the Halley
process.

As remarked in Section 2, the starter is formally correct to order e3, and it leads to
a maximum residual error of about 0.16 rad, when substituted in (1); this occurs
when e =1 and M is a multiple of 27, since the limiting value of (4) is then 1 rad. For
low values of M (taking 0 < M < r) the starter, which is a monotonic function of M,
always over-estimates E, assuming e > (), but there is a cross-over value of M, above
which the starter underestimates E. For the cross-over M, (4) generates an im-
mediate solution of (1), and this value of M is plotted against e in Figure 1, together
with the corresponding value of E.

Two features of the Halley iteration process in EKEPL1 are worth discussing. The
first concerns the convergence criterion, which is specified by the satisfying of (1) to
a residual whose magnitude does not exceed 10~ *rad. This gives very much better
accuracy than at first sight appears, since the criterion is effectively applied to an E;
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Fig. 1. Cross-over values of M and E for the S starter.

that is an iteration behind the current best estimation (E;, ;) of the process. Thus it
follows from the cubic convergence—cf. the analysis of Danby and Burkardt (1983)
and the remarks of Smith (1961) on convergence termination — that f;, , is O(f?), so
long as f7; is not too small. Hence the 10~ * criterion actually implies an accuracy of
the order of 107 !?rad, except when (e, M) is in the vicinity of (1,0) where the
degeneration to linear convergence is bound to make EKEPL1 behave badly.

When convergence degenerates, the solution of (1) is known to behave like the
solution of E* = 6 M and, as shown by Gooding and Odell (1985), the residual in (1)
then reduces by a factor of § on each iteration; thus the initial residual of about
0.16 rad reduces to about 4 x 10~ >rad after the fourth iteration, which makes the
fifth iteration the terminal one with an (implicit) residual of about 5 x 10~ °rad.
With e limited to 0.9, however, there will never be more than three iterations and the
maximum residual in (1) is about 10 1° rad.

The other feature of EKEPLI worth referring to concerns its automatic applica-
bility to arbitrary values of M, as Table 1 promises for the starter. The procedure
operates by the refinement of ¥, equal to E — M, rather than E itself, which avoids
the theoretical possibility, for very large values of M and computers of low
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precision, that the convergence criterion might fail to operate and the process
continue indefinitely. This would be a consequence of rounding error, of course, to
which otherwise little attention is given in EKEPLI1. For the other procedure
(EKEPL2), to which the rest of Section 4 is devoted, rounding error has been
allowed for very carefully, since this procedure was designed for maximum accuracy
under all circumstances.

4.2. THE NEW PROCEDURE — STARTER

The difficulty in solving Kepler’s equation increases as e rises from zero to unity, but
in one respect (as we have seen in discussing the starter S,,) there is an immediate
simplification with e =1, since the starter W works so well. It was decided to
base the starter for a new procedure on two principles, therefore: first, that the
starter for arbitrary e should be obtained, via linear interpolation, from the starter
for e = 1; second, that this special starter, which would now always be used, should be
made as efficient as possible. We consider these points in turn.

If Ey, denotes a starting value (E,) for e = 1, then the linearly interpolated starter
for general e is given by

E0=€E01+81M, (20)

where e; =1 —e as in (11). To assess the interpolation principle, before the E,
starter had been selected, it was decided to pretend that an exact E,, would be
available and to look at the value of f(E,) given by (2), i.e. to look at M, — M, where

My =E, - esin E,. (21)
We also have

from the assumption about E,,, so if we regard E,; as the independent variable,
with the resulting M, E, and M, given by (22), (20) and (21) in turn, we can do
the analysis without actually having to solve either of the two versions of Kepler’s
equation. We get

Mo—M=ee Eq {1 —3E3;2+e+e’)+
+25ES 2+ e+ 11e? + e +e*)+ O(ES))}.  (23)

Equation (23) can be differentiated with respect to E,; to locate the approximate
value of E,; (and hence M) that, for a given e, makes M, — M maximum; in
particular, we find (from the smaller root of the quadratic equation in E3,) that E,
is about 1.05rad and 0.79 rad for e =0 and 1 respectively, the corresponding values
of M being 0.18 rad and 0.08 rad.

These results were confirmed by direct numerical analysis of Equations (20) to
(22). Figure 2 plots results for the full range of e, showing (for each e) both the
maximum value of |[M, — M| and the value of M to which it applies. The overall
maximum value of |[M, — M| is about 0.149 rad, occurring for an e of about 0.46.
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Fig. 2. Maximum residual (M, — M) for hypothetical starter linearly interpolated from the exact solu-
tion for e=1.

(For each e there is an M for which the error is zero, and for larger M the value of
M, — M is negative, but the maximum value of |M, — M| is always for M, > M).
After this analysis it seemed probable that linear interpolation, based on a sound
starter for e =1, would give good results. It remained to choose the special starter
with efficiency in mind, the assessment being in parallel with the choice of the
iterator, to be described in Section 4.3. All the desiderata of Section 2 were to be
satisfied if possible, and attention was directed to the use of the bilinear formula,

_a+fM

01————y+M’ (24)

with suitable constants o, ff and y. This is very fast to compute, following a
normalization of M to the range, (0,7), and it was soon found that good results
could be obtained if the lower limit of the range was changed from zero to a small
positive quantity. A second bilinear formula could then be patched in to cover the
bottom of the range, but it was found that three such formulae would be necessary
to guarantee an accuracy (in satisfying Equation (1)) of 10~ '3 rad with the two-
iteration convergence process that was emerging.
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The patching of bilinears was not very appealing, however, neither of the last two
desiderata being satisfied. Even the accuracy remained unsatisfactory, for very small
M, being poor in relative (as opposed to absolute) terms. The reason for this lies in
the impossibility of representing a cube root of a bilinear formula, when the range
covered extends to zero. An obvious solution to the difficulty would be to use the

simplest cube-root starter, W , over the entire range. One objection to this is the
resulting discontinuity at M ==, where the starter would give about 2.66 rad, for
E,,, instead of m; this could be dealt with in various ways, a surprisingly efficacious
one being just to replace W by J/n*M. The real objection to a universal cube-
root starter, however, is the time wasted in computing it.

The natural compromise was to patch the \3/6vM starter into a single bilinear
formula, if a way of doing this could be found that left all the desiderata satisfied.
The transition point would inevitably be, to some extent, arbitrary, but the
arbitrariness ends here since the constants in (24) can be chosen to satisfy three
obvious conditions: that E,; is continuous at the transition; that its derivative with
respect to M is likewise; and that E,; = = when M = n. (Continuity of the derivative
is then automatic, at M = n, as remarked in Section 2.)

To make our starter ‘smoothly portable’ at M =, we re-express (24) as

aWw
U= 25
b— W’ ( )
where
W=n—-M, U=n—-E,. (26)

It is assumed, of course, that m is held to the maximum possible accuracy on the
computer used (Fortran variable PI in the listing of Appendix B), but no other
constants have to be approximated. It turned out that a very suitable transition
value was given by M =Lrad, since (25) can then be patched to both E,, (= 1rad)
and its derivative by taking

a=(n—1)%/(n+2/3) (27a)
and
b =2(n — 1/6)*/(rn + 2/3). (27b)

Figure 3 plots the cube-root and bilinear curves that, between them, yield the
adopted E,,, the unused segment of each curve being included for completeness.
The true plot of E against M (for e = 1) is also provided. The unused segment of the
cube-root curve yields about 2.66 rad at M =z, whilst the unused segment of the
bilinear curve yields about 0.63rad at M =0. The slope of the bilinear curve, at
M =mr, is given by a/b, which is about 0.26; the true slope is 0.5 exactly, but (as has
been remarked) this is of no consequence.

Equations (20) and (25) to (27) determine the starter S'2. The maximum value of

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1986CeMec..38

PROCEDURES FOR SOLVING KEPLER’S EQUATION 323

M (deg)
Tl:o 60 120 180
180
E E
(rad) (deg)
n 120
Unused .
bilinear 75 Bilinear and
E true cross
1 Bilinear and

3T 55° 1 cube root 460

touch

Bilinear and
| __True Kepler and true cross
cube root {used)
35°C 1 .
0 10° 20
0 L 2‘ 0
0 1 2 T
3 3T

M (rad)

Fig. 3. The S, starter (e =1) — cube root and bilinear functions.

1

|[M, — M| that results, with M, given by (21), is plotted against e in Figure 4, which
effectively supersedes Figure 2 now that a real starter (rather than a hypothetical
one) is available. For values of e up to about 0.689, the maximum |M, — M| occurs
for values of M for which the solution of (1) is always around 0.2 rad, but for higher
values of e this peak is exceeded by another, associated with values of M for which E
is about ten times greater. Thus Figure 4 is the upper envelope of two curves, and
extensions of these are shown at the intersection point. The overall maximum value
of |M, — M|, which occurs for e =1 and an M of about 1.7 rad, is about 0.385 rad.
For every e it happens that the maximum |M, — M| occurs with M, > M, and if e
lies between about 0.398 and 0.977, M, actually exceeds M for all M in the range
O, 7).
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Fig. 4. Maximum residual (M, — M) for the S,, starter.

4.3. THE NEwW PROCEDURE — ITERATOR

To achieve smooth portability, a basic requirement of the new procedure (EKEPL?2)
was that it should operate with a fixed number of iterations, independent of e as well
as M. It was inconceivable that a single iteration would suffice, so the hope was that
a sufficiently accurate two-iteration process could be found. The criterion for
‘sufficient accuracy’ was, for convenience, based on the precision of the computer
employed for the investigation; this was the PRIME 750, computing to double
precision, so an objective of 107"3 rad was set.

With an overall maximum residual error of about 0.385 rad for the starter finally
selected, it was certain that two iterations of neither a quadratic nor a cubic iterator
would be adequate. Two iterations of an iterator with quartic convergence might
well be good enough, however, since [(0.385)*/4!]*/4! ~ 3 x 10~ !*. We considered
five quartic iterators, of which the first is the most obvious one, which in each
iteration computes the quantity denoted by é,,; in Section 3 (and given also by
Equation 18 of Danby and Burkardt (1983)). The other four iterators compute the
quantities that are denoted by d,3;, 0,312, 0123, and J,,5;, in Section 3. With
these iterators there is an effective separation of an iteration into two components;
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each component is either Newton—Raphson or Halley, so the four iterations can also
be labelled NN, NH, HN and HH, respectively. All five iterators approximate the
root of the hyper-osculating cubic curve, and an exact root of the cubic equation
could of course be found, but only at the expense of a cube-root extraction.

The first iterator was rejected quite quickly. It can easily be seen to be inferior to
the last two: these three iterators all start by making the same approximation (given
by d,,) to the root of the osculating quadratic curve and then switching attention to
the more accurate cubic; the first iterator just applies the secant method to this
curve, but the other two apply Newton—Raphson and Halley, respectively, via a
preliminary ‘rectification’. (In terms of the iterator finally selected, it was found that
the first iterator produced (M — M,) residuals about two orders of magnitude
larger.)

Of the remaining four iterators, a general investigation had shown that NN and
HN are preferable to NH and HH in situations (not applying to our starter) where
the current estimate of the root is poor. This is because, after the first part of the
iteration, the cubic curve may have diverged so much from the true curve that it is
safer to conclude the iteration by using Newton—Raphson rather than Halley. (With
the starter E, = &, for example, which ought always to be safe, a single NH or HH
iteration, for e=1 and M =0, leads to E, ® —4.6rad, which is hopeless, whereas
NN and HN lead to E, =0.7rad.) Further, both NN and HN are faster than either
NH or HH. It was decided to use NN or HN, therefore, and as NN was found to be
not quite good enough our final choice of iterator is HN, giving 6;,3;-

4.4. THE NEW PROCEDURE — IMPLEMENTATION AND RESULTS

The Fortran-77 function (EKEPL2) implementing our new procedure is listed in
Appendix B. It will be seen that there are essentially five components: reduction of
the range of M to the interval (0, w), cube-root/bilinear starter for the reduced M
and unit e; linear interpolation to a starter for the actual e; two applications of the
HN (d,,5,) iterator; and shift of E back to the original interval.

The procedure was designed to avoid the build-up of truncation error in the
vicinity of (e,M)=(1,0), but some remarks are called for on the avoidance of
rounding error in this region (see also Section 5, on the use of universal variables).

The relative error, as the solution to (1) tends to zero (behaving like \%M), will be
out of control unless the quantities f and f’ (computed as F and FD during the
iterative process) are computed in a special way whenever a suitable test criterion is
satisfied.

The problem is the usual one of avoiding the subtraction of almost equal
quantities. There is no difficulty with f'(=1—ecos E), since this is naturally
computed as e, +2esin?(E) when the criterion is satisfied (the fact that e, is
computed as the difference of two almost equal quantities causes no difficulty). It is
not so simple for f. We have, from (2),

flE)=e; sin E +(E —sin E) (28)
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and the problem is to compute an accurate value of the second term, of the form
E—sin E=LE*—{E° +--, (29)

when E is small. We have not proposed an efficient universal algorithm for this
computation, since the algorithm should be tailored, like the sine and cosine
algorithms, to the particular computer, but we do give in Appendix C an inefficient
universal algorithm (EMKEPL). This simply computes terms of (29) until there is
no change in value. :

This leaves the matter of the test criterion, which is largely arbitrary. It is natural
to use the same criterion for both f and f’, and since we can write, from (28),
f(E) = (e + B)E, where a ~ ¢, and B~ +E? when E is small, it seemed natural to use
e, ++E?* as a single (composite) test quantity. The essentially arbitrary value of 0.1
was chosen as the criterion value, but it is the only arbitrary value in the EKEPL2
procedure (not counting the cube-root/bilinear transition in the starter).

Implementation and testing on the PRIME 750 computer confirmed that the
looked for limiting accuracy (of around 10 '3 rad) would always be met. Thus in no
case would a more accurate result be obtained by taking the HN process to a third
iteration. It was obviously of interest to know the true (ultimate) accuracy of
the procedure, however, i.e. the behaviour of its truncation error, so it was decided to
investigate this on computers of greater precision. The first choice was the
Honeywell 870M, recently installed by the RAE’s central computing service, and the
second choice was the Cray 1S that is connected to the Honeywell. The accuracy of
the Honeywell is such that (in double precision) it could detect any truncation error
in excess of about 107 % rad, and it was quickly found that the maximum error in
the solution of Kepler’s equation by EKEPL2 is less than 10~ !*rad, occurring for
an eccentricity of about 0.85 (with M about 0.033 rad and hence E about 0.21 rad).
To get an accurate picture, however, it was necessary to go to the Cray, for which
the accuracy is such that an error of about 10 2% rad would be detectable.

The Cray results confirmed that the maximum error in E is just under
7 x 107'% rad, occurring for e ~ 0.853. However, we have usually been concerned with
the residual in (1), when a solution is substituted back, rather than with the error in the
solution itself, and the maximum residual (M — M, )is actually less than the maximum
error (E — E,), being about 1.2 x 10713 rad and occurring for e ~ 0.835. (It is worth
remarking here that the linear interpolation of (20) could be replaced by a more
elaborate form of weighting if desired; with e and e, replaced by e* and 1 — e?, for
example, the maximum residual drops from 1.2 x 10" *3rad to 2.5 x 10~ !" rad.)
Figure 5 shows the variation, with e, of both the maximum error (for a given e) and
the maximum residual; the tenth roots of both quantities have been plotted, on a
linear scale, to produce curves of reasonable shape (points plotted for e less than
about 0.2 are essentially estimates, since here even the Cray output is contaminated
by rounding error, but it is obvious that the estimation was easy).

Figure 6 shows the variation in (tenth-root of) the M residual for the fixed value
of e, viz 0.835, that gives the overall maximum residual; it is plotted against E, rather
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Fig. 5. Maximum error (E — E,) and residual (M — M,), in radians, for procedure EK EPL2.

than M, to produce a more instructive curve — a separate plot of M against E is
provided. A plot of the relative residual is also provided; this crosses the curve for
the absolute residual where M = 1, of course, and peaks only slightly before the
absolute peak.

The ‘error’ plotted in Figure 5 must be understood to be the negative of the error
in the normal sense, since E,, the solution of E, is always (if 0 <M <n) an
underestimate rather than an over-estimate. This may be shown, for the particular
iterator, to be a corollary of the fact that, throughout the open interval (0, =),
f"™(E) < 0. Further, if e lies between 0.398 and 0.977, as specified at the end of
Section 4.2, then the error does not vanish between 0 and n, and Figure 6 is an
example of this.

An evident feature of Figure 6 is the existence of a second (local) maximum, at a
value of M of about 1.3rad. As e increases between 0.835 and 1, the residual at the
second maximum increases, whilst at the first maximum it falls. Eventually, for e
about 0.984, the second maximum becomes dominant, and this explains the little up-
turns in Figure 5, right at the end of both curves (cf. the same effect in Figure 4).
Each ‘second maximum’ can in fact be tracked beyond e = 1; only when e reaches
1.35 does its value for the M-residual curve equal the peak value of the first
maximum.

Some remarks on the computing time for EKEPL2 may be of interest. The basic
time, when M > Zrad (after range reduction) so that no cube root is required by the
starter, is about 1ms, 0.8 ms and 0.5ms on the PRIME, Honeywell and Cray
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computers, respectively (about the same as for three iterations of EKEPLI). Taking
the cube root on the PRIME costs about 0.4 ms, but there is only 1 chance in 6%
that this is necessary, assuming a uniform distribution of time and hence M, so the
average computing time rises by only about 29,; the percentage rise is similar on the
other two computers. There is also a penalty for the avoidance of rounding error,
but even with the inefficient EMKEPL listed in Appendix C, and assuming the
worst case (e = 1), the average computing time does not rise by more than 4%, on
any of the three computers.

In our new procedure the iterative process is quartic and gives a maximum error
less than 10~ '*rad after only two iterations, so a third iteration would presumably

reduce this to not much more than 107 °° rad. No attempt has been made to verify
this!

5. Unified and Universal Formulations

A number of papers on Kepler’s equation, in particular those of Bergam and
Prussing (1982), Burkardt and Danby (1983) and Shepperd (1985), have emphasized
the advantages of a universal formulation such that a single equation covers all the
conic sections that can define a two-body orbit, including the three degenerate
‘rectilinear orbits’. Shepperd attributes the universal approach to Stumpff (1947),
whilst other papers usually refer to one of the text-books that popularized it, in
particular Battin (1964) and Herrick (1971); the latter gives extensive material on the
subject, with a careful distinction between unified variables and universal variables —
unified variables break down for a circular orbit. The universal formulation does not
provide a magic avoidance of the solution of (1), however, as Herrick was at pains to
observe (page xix, loc cit), and we believe that this remark merits some
amplification.

First, we show how a ‘unified equation’ can be developed from the elliptic
equation, (1), which (in the usual notation, with t measured from a unique perifocus
if e #0), can be rewritten as

a®*(E — esin E)=./ut. (30)

We start by defining the two transcendental functions of Battin (1964), closely
related to the Stumpff functions and given by

1 x x?
R TR TR TR Gl
and
JR— 1 x x2 . . »
T T (32)

The relation to the sine and cosine functions is evident and we can at once rewrite
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(30) as
a*2{(1 — e)E + eE3S(E?)} = /. (33)
We now replace a, e and E by «, g and X, defined by
o= 1/a,
q=a(l—e)
and
X=./akE,

these being unified variables (x and g are universal, but X still depends on the
existence of a perifocus). Then (33) gives
gX + (1 —ag)X38(X?) =/ ut, (34)

which is the unified equation. (It has been tacitly assumed that a<O0 for a
hyperbola, so that g is universally the perifocal distance.)

We wish to comment on (34), but before doing so, we show how the universal
equation, free of the perifocal reference, can be developed in the same way, from the
elliptic equation, (1). We start from the version of Equation (30) that relates to t,, an
arbitrary but well-defined epoch, viz

a**(Ey — e sin Eo) = \/ uto.
Subtraction of this from (30), with some elaboration, gives
a**{(1 —e cos EoE — Ey) + e sin E, [1 —cos (E — E,)]
+ecos Ey [E — Eq —sin (E — Eg)]} = /1t — to). (35)
We write
X = /a(E - Ey),
ro =a(l —ecos Eg)

and

1, Yo=~/Ha esinEg,

using the position and velocity vectors (r, and V) at t,, and measure ¢t now from t,.
Then the three left-hand-side terms of (35) translate directly to the terms of the
universal equation, which is

roX +(Fo- Vo /1) X2C@X?) + (1 — arg) X3S X?) = /. (36)

This gist of our comments about Equation (34) is that, for an orbit known to be
elliptic, there is no advantage in solving this equation rather than (1), and there may
be a distinct disadvantage. The only basis for an advantage comes from the
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avoidance of rounding error when E is (numerically) small, since S(xX?) is then
computed without the loss of accuracy that can arise from E — e sin E. But S(aX ?) is
just (E — sin E)/E* and we have seen in Section 4 how, by a version of the procedure
EMKEPL, the rounding error in E —sin E can be avoided.

The disadvantage of solving (34), rather than (1), arises with values of ¢ that are
greater than an orbital period. In defining S(x), the periodic nature of the sine
function has been lost, and this can lead to serious error in S(aX ?) where it would be
negligible in sin E (unless, of course, t is range-reduced by a multiple of the orbital
period first). It is not possible to overcome the difficulty by the (inefficient)
computation of a great many terms, since the terms initially grow in magnitude and
the rounding error can be enormous (as indicated by a comment in the listing of
EMKEPL in Appendix C).

A final comment concerns the solution of Kepler’s equation as e approaches zero,
since it is sometimes feared that the disappearance of perifocus causes real difficulty
in orbit computations — cf. the solution of (36) rather than (34). This is a
misconception, however, and the solution of (1) remains valid all the way to the
trivial case when, in the limit, an arbitrary point of the circle can be regarded as
‘perifocus’. Other parts of an orbit computation may need, of course, to be
formulated with the necessary care to avoid breakdown due to division by zero, etc.

6. Conclusion

We have looked at a number of starting values for an iterative solution of Kepler’s
equation, listing twelve of them in Table 1. In parallel, we have considered con-
vergence processes that are superior to the standard method of Newton (and
Raphson).

Two solution procedures are particularly recommended, with listings appended.
The first, EKEPLI, has been used at RAE for a number of years, but not previously
published. With iteration by the Halley process, which normally gives cubic
convergence, and a criterion of 10~ % rad for the satisfying of the equation after the
penultimate iteration, an accuracy better than 10~ '?rad (residual in M) is normally
achieved. The procedure never requires more than five iterations. When e cos M is
close to unity, the convergence degenerates to linear, and it is only then that the
accuracy is poor.

The other procedure, EKEPL2, is entirely new. The number of iterations is fixed
at two, and quartic convergence gives an accuracy better than 10~ '*rad (both in E
and in residual M) for all values of e and M. Convergence never degenerates, this
being at the expense of a cube-root extraction whenever M is within 1/6 rad of a
multiple of 2n. The procedure is very efficient, however, and requires an average
time of only about 1 ms on current computers. The avoidance of rounding error
(when e cos M = 1) requires the use of a subordinate procedure (EMKEPL), the
function of which is akin to the use of unified variables.
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Appendix A
THE EKEPL1 PROCEDURE

DOUBLE PRECISION FUNCTION EKEPL1 (EM, E)
DOUBLE PRECISION EM,E, TESTSa@, C,S, PSI,
1 XI1,ETA, FD,FDD,F, DCOS,DSIN,DSGRT

C SOLVE KEPLER'S EQUATION, EM = EKEPL - E#DSIN(EKEPL),
C WITH LEGENDRE-BASED STARTER AND HALLEY ITERATOR
cC (FUNCTION HAS ALSO BEEN USED UNDER THE NAME EAFKEP)

DATA TESTSQ /1iD-8/

C = E*DCOS(EM)

8 = E*DSIN(EM)

PSI = S/DSQRT(1DO — C - C + E#E)

1 XI = DCOS(PSI)

ETA = DSIN(PSI)

FD = (1DO — C#XI) + S*#ETA

FDD = C#ETA + S#XI

F = PSI - FDD

PSI = PSI — F#FD/ (FD#FD - 3D—-1#F#FDD)

IF (F»F .GE. TESTSGQ) GO TO 1

EKEPL1 = EM + PSI

RETURN

END

Appendix C
AN UNSOPHISTICATED EMKEPL PROCEDURE

DOUBLE PRECISION FUNCTION EMKEPL (E, EE)
c ACCURATE COMPUTATION OF EE - E#DSIN(EE)
C WHEN (E, EE) IS CLOSE TO (1, O)
c NB — MUST NOT BE USED FOR LARBE EE (ABSOLUTE)
c AS THEN ROUNDING WORSE NOT BETTER

IMPLICIT DOUBLE PRECISION (A—-H, 0-2)
c DOUBLE PRECISION E, EE, X, EE2, TERM, D, XO

X = (1DO ~ E)#*DBIN(EE)
EE2 = —-EE#EE
TERM = EE
D = ODO
1 D=D + 2D0
TERM = TERM#EE22/(D#(D + 1DO))
X0 = X
X = X — TERM
IF (X.NE.XO) GO TO
EMKEPL = X
RETURN
END
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Appendix B

THE EKEPL2 PROCEDURE

DOUBLE PRECISION FUNCTION EKEPL2(EM, E)
KEPLER'S EGUATION, EM = EKEPL - E%DSIN(EKEPL) WITH
E IN RANBE O TO 1 INCLUSIVE, SOLVED ACCURATELY
(IMPLICIT DOUBLE PRECISION (A-H,0-Z) COULD REPLACE
THE NEXT THREE LINES)
DOUBLE PRECISION EM, E, PI, TWOPI, PINEG, SW, AHALF, ASIXTH,
1 ATHIRD, A, B, EMR, EE, W, E1, FDD, FDDD, F, FD, DEE,
2 DMOD, DSIN, DCOS, EMKEPL
LOGICAL L
PARAMETER (PI=3.141592653589793238446244338328D0, TWOPI=2D0#PI ,PINE
1 8=—PI, SW=1D-1, AHALF=0.5D0,ASIXTH=AHALF/3D0,ATHIRD=ASIXTH#2DO,
2 A=(PI-1DO0) ##2/ (PI+2D0/3D0) ,B=2DO0% (PI-ASIXTH) ##2/ (P1+2D0/3D0) )
RANGE-REDUCE EM TO LIE IN RANBE -PI TO PI
EMR = DMOD (EM,TWOPI)
IF(EMR.LT.PINEG) EMR = EMR + TWOPI
IF(EMR.GT.PI) EMR = EMR - TWOPI
EE = EMR
IF (EE) 1,4,2
EE = -EE
(EMR 1S RANBE-REDUCED EM & EE IS8 ABSOLUTE VALUE OF EMR)
STARTER FOR E = 1 BY CUBE ROOT OR BILINEAR FUNCTION
IF (EE.LT.ASIXTH) THEN
EE = (&DO#EE)*%ATHIRD
ELSE
W =PI - EE
EE = PI — AW/ (B - W)
END IF
IF (EMR.LT.ODO) EE = —-EE
INTERPOLATE FOR E
EE = EMR + (EE — EMR)*E
DO TWO ITERATIONS OF HALLEY, EACH FOLLOWED BY NEWTON
El = 1DO - E
L = (E1 + EE#EE/6DO) .BE. SW
DO 3 ITER=1,2
FDD = E#*DSIN(EE)
FDDD = E#DCOS (EE)
IF (L) THEN
F = (EE — FDD) - EMR
FD = 1DO - FDDD
ELSE
F = EMKEPL(E,EE) - EMR
FD = E1 + 2DO%E#DSIN(AHALF#EE) ##2
END IF
DEE = F#FD/(AHALF#F#FDD — FD#FD)
F = F + DEE#(FD + AHALF#DEE%(FDD + ATHIRD#DEE*FDDD))
TO REDUCE THE DANGER OF UNDERFLOW REPLACE THE LAST LINE BY
W = FD + AHALF#DEE#* (FDD + ATHIRD#*DEE#FDDD)
FD = FD + DEE#(FDD + AHALF#DEE#FDDD)

3 EE = EE + DEE ~ F/FD

IF REPLACINB AS ABOVE, THEN ALSO REPLACE THE LAST LINE BY

3 EE = EE — (F — DEE#(FD - W))/FD

RANGE-EXPAND

4 EKEPL2 = EE + (EM - EMR)

RETURN
END
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