Orbital Mechanics with MATLAB

Lambert’s Problem

This document describes four MATLAB scripts that demonstrate how to solve the Earth orbit,
interplanetary, and J,-perturbed form of Lambert’s problem. Lambert’s problem is concerned with the

determination of an orbit that passes between two positions within a specified time-of-flight. This
classic astrodynamic problem is also known as the orbital two-point boundary value problem (TPBVP)
or the flyby and rendezvous problems.

Lambert’s theorem

The time to traverse a trajectory depends only upon the length of the semimajor axis a of the transfer
trajectory, the sum r, +r, of the distances of the initial and final positions relative to a central body, and
the length c of the chord joining these two positions. This relationship can be stated as follows:

tof =tof (1 +r,,c,a)

From the following form of Kepler’s equation

y7,

3
t—t, :\/a—(E—esin E)

we can write

3
t:\/g[E— E,—e(SinE—sinE,)]
7

where E is the eccentric anomaly associated with radius r, E, is the eccentric anomaly at r,, and t =0
when r =r,.

At this point we need to introduce the following trigonometric sun and difference identities:

: . .o a+
sina —sin f =2sin ﬁcos p

2
COSa—cosﬂz—Zsina_ﬁsina+ﬂ

2 2
cosa+cosﬁ:2cosa;ﬂcosa;’8

If we let E =« and E, = £ and substitute the first trig identity into the second equation above, we have

the following equation:
3 —
t= fa—{E—EO—ZsinE Eo(ecosE+E°]}
Y7, 2 2

With the two substitutions given by

page 1

Orbital Mechanics with MATLAB

E+E,
ecosT =CO0s

the time equation becomes

From the elliptic relationships given by
r=a(l-ecosE)
x=a(cosE —e)

y=asinE+y1-¢’

and some more manipulation, we have the following equations:

COSa:[l_r+ro)_£:l_r+r0+c:1_§

2a 2a 2a a

sinﬂzil—Hro L€ THh—Cc_, s—c
2a 2a 2a a

This part of the derivation makes use of the following three relationships:

cosa_ﬂcosa+ﬂ 11tk
2 2 2

With the use of the half angle formulas given by

. S . p s—cC
sm—:,/— sin— = /—
2 2a 2 2a

and several additional substitutions, we have the time-of-flight form of Lambert’s theorem

page 2

Orbital Mechanics with MATLAB

t— Z[(a_ﬂ)—(sina—sinﬂ)]

A discussion about the angles « and g can be found in “Geometrical Interpretation of the Angles « and
S in Lambert’s Problem” by J. E. Prussing, AIAA Journal of Guidance and Control, Volume 2,
Number 5, Sept.-Oct. 1979, pages 442-443.

The algorithm used in these MATLAB scripts is based on the method described in “A Procedure for the
Solution of Lambert’s Orbital Boundary-Value Problem” by R. H. Gooding, Celestial Mechanics and
Dynamical Astronomy 48: 145-165, 1990. This iterative solution is valid for elliptic, parabolic and
hyperbolic transfer orbits which may be either posigrade or retrograde, and involve one or more
revolutions about the central body.

Primer Vector Analysis

This section summarizes the primer vector analysis included with the 1ambert1.m MATLAB script.
The term primer vector was invented by Derek F. Lawden and represents the adjoint vector for velocity.
A technical discussion about primer theory can be found in Lawden’s classic text, Optimal Trajectories
for Space Navigation, Butterworths, London, 1963. Another excellent resource is “Primer Vector
Theory and Applications”, Donald J. Jezewski, NASA TR R-454, November 1975, along with
“Optimal, Multi-burn, Space Trajectories”, also by Jezewski.

As shown by Lawden, the following four necessary conditions must be satisfied in order for an
impulsive orbital transfer to be locally optimal:

(1) the primer vector and its first derivative are everywhere continuous
(2) whenever a velocity impulse occurs, the primer is a unit vector aligned with the impulse and

has unit magnitude (p=p =0, and |p|=1)
(3) the magnitude of the primer vector may not exceed unity on a coasting arc (|| = p<1)
(4) at all interior impulses (not at the initial or final times) pep = 0; therefore, d||p||/dt =0 at the

intermediate impulses

Furthermore, the scalar magnitudes of the primer vector derivative at the initial and final impulses
provide information about how to improve the nominal transfer trajectory by changing the endpoint
times and/or moving the impulse times. These four cases for non-zero slopes are summarized as
follows;

e If p,>0and p, <0— perform an initial coast before the first impulse and add a final coast

after the second impulse
e If p,>0and p, >0— perform an initial coast before the first impulse and move the second

impulse to a later time

page 3

Orbital Mechanics with MATLAB

e If p,<0 and p, <0— perform the first impulse at an earlier time and add a final coast after the

second impulse
o If p,<0 and p, >0— perform the first impulse at an earlier time and move the second

impulse to a later time

The primer vector analysis of a two impulse orbital transfer involves the following steps.

First partition the two-body state transition matrix as follows:

or or
D(tt)= ar, v, :[cpn cblz}{cbn cbw}
- ov ov CDZl CDZZ chr chv
on, v,

where
oxlox, oxloy, oxlaoz,

or
D, = a—r}= oylox, oyloy, oyloz,
°4 lozlex, ozloy, ozlaz,

and so forth.

The value of the primer vector at any time t along a two body trajectory is given by
p(t) =Dy (t’ to)po +@, (tvto) Po
and the value of the primer vector derivative is

p(t) =0, (t'to)po +0,, (t’to)po

RIE

The primer vector boundary conditions at the initial and final impulses are as follows:

which can also be expressed as

AV,
p(to): Po = |AVO|
0

page 4

Orbital Mechanics with MATLAB

These two conditions illustrate that at the locations of velocity impulses, the primer vector is a unit
vector in the direction of the impulses.

The value of the primer vector derivative at the initial time is
B(t) = Po = P13 (tt){Pr — Py (111)Ps
provided the ®,, sub-matrix is non-singular.
The scalar magnitude of the derivative of the primer vector can be determined from

d”p” d 2 Pep
T _(p'p) =
”p”

dt dt
lambertl.m — Earth orbit solution

This MATLAB application demonstrates how to solve the two-body form of Lambert’s problem for a
satellite in Earth orbit. The following is a typical user interaction with this script.

program lambertl

< Earth orbit lambert problem >

initial orbit

please input the semimajor axis (kilometers)
(semimajor axis > 0)
? 8000

please input the orbital eccentricity (non-dimensional)
(0 <= eccentricity < 1)
20

please input the orbital inclination (degrees)
(0 <= inclination <= 180)
? 28.5

please input the right ascension of the ascending node (degrees)
(0 <= raan <= 360)
? 100

please input the true anomaly (degrees)

(0 <= true anomaly <= 360)

20

final orbit

please input the semimajor axis (kilometers)

(semimajor axis > 0)
? 8000

page 5

Orbital Mechanics with MATLAB

please input the orbital eccentricity
(0 <= eccentricity < 1)

20

please input the orbital inclination

(0 <= inclination <= 180)

? 28.5

please input the right ascension of the ascending node

(0 <= raan <= 360)

? 100

please input the true anomaly

(0 <= true anomaly <= 360)

? 170

(degrees)

(non-dimensional)

(degrees)

please input the transfer time in minutes

? 56

orbital direction

<1> posigrade
<2> retrograde

selection
21

(1 or 2)

(degrees)

please input the maximum number of transfer orbits around the Earth

20

The following is the output created by this application.

program lambertl

< Earth orbit lambert problem >

orbital elements of the

sma (km)
+8.00000000000000e+003

raan (deg)
+1.00000000000000e+002
orbital elements of the

sma (km)
+8.00047140990639e+003

raan (deqg)
+1.00000000000000e+002
orbital elements of the

sma (km)
+8.00047140990639e+003

initial orbit

eccentricity
+0.00000000000000e+000

true anomaly (deg)
+0.00000000000000e+000
transfer orbit after the

eccentricity
+6.70937482986916e-004

true anomaly (degqg)
+2.75000000000012e+002

transfer orbit prior to the

eccentricity
+6.70937482986917e-004

inclination (deqg)
+2.85000000000000e+001

arglat (deg)
+0.00000000000000e+000

initial delta-v

inclination (degq)
+2.85000000000000e+001
arglat (deg)

+0.00000000000000e+000

final delta-v

inclination (degq)

+2.85000000000000e+001

page 6

+0

+1

+8

+1

+8

argper (deg)
.00000000000000e+000

period (min)
.18684693004297e+002

argper (deq)
.49999999999880e+001

period (min)
.18695183622590e+002

argper (deg)
.49999999999975e+001

raan (deq)
+1.00000000000000e+002
orbital elements of the

sma (km)
+8.00000000000000e+003

raan (deq)
+1.00000000000000e+002

Orbital Mechanics with MATLAB

initial delta-v vector and magnitude

x-component of delta-v
y-component of delta-v
z—-component of delta-v

delta-v magnitude

final delta-v vector and magnitude

x-component of delta-v
y-component of delta-v
z—-component of delta-v
delta-v magnitude

total delta-v

transfer time

true anomaly (deqg) arglat (deq)
+8.50000000000025e+001 +1.70000000000000e+002
final orbit
eccentricity inclination (deg)
+0.00000000000000e+000 +2.85000000000000e+001
true anomaly (deg) arglat (deg)
+1.70000000000000e+002 +1.70000000000000e+002
0.640619 meters/second
-4.677599 meters/second
0.098476 meters/second
4.722290 meters/second
-0.279892 meters/second
4.704815 meters/second
-0.293925 meters/second
4.722290 meters/second
9.444579 meters/second
56.000000 minutes

period (min)
+1.18695183622590e+002

argper (deq)
+0.00000000000000e+000

period (min)
+1.18684693004297e+002

The graphical primer vector analysis for this example is shown below. These plots illustrate the
behavior of the scalar magnitudes of the primer vector and its derivative as a function of the orbit

transfer time.

primer vector magnitude
o o] o o [
L o @ ~ o« ©

o
w

o
N

Primer Vector Analysis

0.1 L
0 500 1000

I
1500

I I
2000 3000

2500

simulation time (seconds)

page 7

|
3500

Orbital Mechanics with MATLAB

<10° Primer Vector Analysis

primer derivative magnitude

L L L L L L I}
0 500 1000 1500 2000 2500 3000 3500
simulation time (seconds)

lambert2.m — interplanetary solution

This MATLAB script demonstrates how to solve the two-body interplanetary Lambert problem. The
following is a typical user interaction with this script.

program lambert?2

< interplanetary lambert problem >

departure conditions

please input the calendar date
(1 <= month <= 12, 1 <= day <= 31, year = all digits!)
? 9,1,1998

please input the universal time
(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60)
2 0,0,0

arrival conditions
please input the calendar date

(1 <= month <= 12, 1 <= day <= 31, year = all digits!)

? 8,15,1999
please input the universal time

(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60)
? 0,0,0

planetary menu

<1> Mercury

<2> Venus
<3> Earth

page 8

Orbital Mechanics with MATLAB

<4>
<5>
<6>
<7>
<8>
<9>

Mars
Jupiter
Saturn
Uranus
Neptune
Pluto

please select the departure planet
? 3

planetary menu

<1l>
<2>
<3>
<4>
<5>
<6>
<7>
<8>
<9>

Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto

please select the arrival planet
? 4

The following is the program output for this example.

program lambert?2

< interplanetary lambert problem >

departure planet 'Earth’
departure calendar date 01-Sep-1998
departure universal time 00:00:00.000
departure julian date 2451057.500000
arrival planet 'Mars'

arrival calendar date 15-Aug-1999

arrival universal time

arrival julian date
transfer time

heliocentric ecliptic orbital elements

sma (km)
1.4959802229%9e+008

eccentricity
1.6709181047e-002

raan (deg)
0.0000000000e+000

true anomaly (deg)
2.3546050380e+002
heliocentric ecliptic orbital elements

sma (km)
1.7145607013e+008

eccentricity
3.3064571581e-001

348.000000

00:00:00.000

2451405.500000

days
of the departure planet

inclination (degq)
0.0000000000e+000

argper (degq)
1.0291439752e+002

arglat (deq)
3.3837490132e+002

period (days)
3.6525745091e+002
of the transfer orbit after the initial delta-v

inclination (deg)
1.4025406657e+000

argper (deq)
8.8020190015e+001

page 9

Orbital Mechanics with MATLAB

raan (deg) true anomaly (deg) arglat (degq) period (days)
3.3837490132e+002 2.7197980998e+002 0.0000000000e+000 4.4816672004e+002
heliocentric ecliptic orbital elements of the transfer orbit prior to the final delta-v

sma (km) eccentricity inclination (degq) argper (deq)
1.7145607013e+008 3.3064571581e-001 1.4025406657e+000 8.8020190015e+001

raan (deg) true anomaly (deq) arglat (deq) period (days)
3.3837490132e+002 2.0668220696e+002 2.9470239697e+002 4.4816672004e+002
heliocentric ecliptic orbital elements of the arrival planet

sma (km) eccentricity inclination (deq) argper (deq)
2.2793918413e+008 9.3400274417e-002 1.8497282956e+000 2.8649805839%9e+002

raan (deg) true anomaly (deqg) arglat (deq) period (days)
4.9555144147e+001 2.9704552666e+002 2.2354358506e+002 6.8697161038e+002

initial delta-v vector and magnitude

x—component of delta-v -8563.836300 meters/second
y-component of delta-v 3718.454469 meters/second
z-component of delta-v 729.797537 meters/second
delta-v magnitude 9364.763759 meters/second
energy 87.698800 km"2/sec”2

final delta-v vector and magnitude

x—component of delta-v 4608.052564 meters/second
y-component of delta-v -2097.558698 meters/second
z-component of delta-v -856.066401 meters/second
delta-v magnitude 5134.856434 meters/second
energy 26.366751 km"2/sec”?2

After the script computes the numerical data, it will ask the user if he or she would like to create a
graphics display of the trajectory. This prompt appears as

would you like to plot this trajectory (y = yes, n = no)
2

If the user responds with y for yes, the script will ask for the plot step size with

please input the plot step size (days)
?

The following is a typical graphics display created with this MATLAB script. The plot is a north
ecliptic view where we are looking down on the ecliptic plane from the north celestial pole. The vernal
equinox direction is the labeled line pointing to the right, the launch planet is labeled with an L and the
arrival planet is labeled with an A. The location of the launch and arrival planets at the launch time is
marked with an asterisk. The plot step size for this example is 5 days.

page 10

Orbital Mechanics with MATLAB

Interplanetary Lambert Problem
L

15 *
1 -
__ 05
2
<
2
g
S or- T
o
[<]
(5]
>
-05 -
Launch
Earth
1 01-Sep-1998
Arrival
Mars
15-Aug-1999
I ! I
2 -1.5 -1 -0.5 0 0.5 1 1.5

X coordinate (AU)

lambert3.m — perturbed motion solution — shooting method with state transition matrix updates

This MATLAB script demonstrates how to solve the J,-perturbed Earth orbit Lambert problem.
However, more sophisticated equations of motion can easily be implemented. The algorithm solves this
problem using a simple shooting technique.

An initial guess for this algorithm is created by first solving the two-body form of Lambert’s problem.
At each shooting iteration, the initial delta-velocity vector is updated according to

Av=[D,]"Ar
where the error in the final position vector Ar is determined from the difference between the two body
final position vector r,, and the final position vector predicted by numerical integration r;,, of the orbital

int
equations of motion as follows:
Ar=r, —r

int
The new initial velocity vector can now be calculated from

V., =V, +AV

The sub-matrix @, of the full state transition matrix is as follows:

page 11

Orbital Mechanics with MATLAB

oxlox, oxloy, oxloz,

or . i .
©,, = {GT} =| oylox, oyloy, oylaz,
°2 lozlex, ozloy, ozldz,

This sub-matrix consists of the partial derivatives of the rectangular components of the final position
vector with respect to the initial velocity vector.

The following is a typical user interaction with this script.

program lambert3

< j2 perturbed Earth orbit lambert problem >

initial orbit

please input the semimajor axis (kilometers)
(semimajor axis > 0)
? 8000

please input the orbital eccentricity (non-dimensional)
(0 <= eccentricity < 1)
20

please input the orbital inclination (degrees)
(0 <= inclination <= 180)
? 28.5

please input the right ascension of the ascending node (degrees)
(0 <= raan <= 360)
? 100

please input the true anomaly (degrees)
(0 <= true anomaly <= 360)
20

final orbit

please input the semimajor axis (kilometers)
(semimajor axis > 0)
? 8000

please input the orbital eccentricity (non-dimensional)
(0 <= eccentricity < 1)
20

please input the orbital inclination (degrees)
(0 <= inclination <= 180)
? 28.5

please input the right ascension of the ascending node (degrees)

(0 <= raan <= 360)
? 100

page 12

Orbital Mechanics with MATLAB

please input the true anomaly
(0 <= true anomaly <= 360)

(degrees)

? 170

please input the transfer time in minutes

? 56

The following is the program output for this example. Please note that the program displays both the
Keplerian (two body) and perturbed solutions for the transfer orbit.

program lambert3

j2 perturbed Earth orbit lambert problem

shooting method with state transition matrix updates

orbital elements of the

initial orbit

sma (km) eccentricity inclination (deg) argper (deg)
+8.00000000000000e+003 +0.00000000000000e+000 +2.85000000000000e+001 +0.00000000000000e+000
raan (deqg) true anomaly (deq) arglat (deq) period (min)
+1.00000000000000e+002 +0.00000000000000e+000 +0.00000000000000e+000 +1.18684693788431e+002
orbital elements of the final orbit
sma (km) eccentricity inclination (deg) argper (deg)
+8.00000000000000e+003 +0.00000000000000e+000 +2.85000000000000e+001 +0.00000000000000e+000
raan (deg) true anomaly (deg) arglat (deg) period (min)
+1.00000000000000e+002 +1.70000000000000e+002 +1.70000000000000e+002 +1.18684693788431e+002
keplerian transfer orbit
sma (km) eccentricity inclination (deg) argper (deg)
+8.00047141376779e+003 +6.70942937076629%9e-004 +2.85000000000000e+001 +8.50000000000164e+001
raan (deg) true anomaly (deg) arglat (deg) period (min)
+1.00000000000000e+002 +2.74999999999984e+002 +0.00000000000000e+000 +1.18695184492725e+002
j2 perturbed transfer orbit
sma (km) eccentricity inclination (deq) argper (deg)
+8.00723489628623e+003 +9.68258357992949e-004 +2.89460861696644e+001 +2.10862530931085e+001
raan (deqg) true anomaly (degqg) arglat (deg) period (min)
+1.00000000000000e+002 +3.38913746906891e+002 +0.00000000000000e+000 +1.18845731080656e+002
delta-v vector and magnitude
x—component of delta-v 23.6892 meters/second
y-component of delta-v 1.6813 meters/second
z-component of delta-v 49.7371 meters/second
total delta-v 55.1161 meters/second
transfer time 56.0000 minutes

page 13

Orbital Mechanics with MATLAB

final position vector error components and magnitude

x—component of delta-r 0.00000999 meters
y-component of delta-r 0.00000171 meters
z-component of delta-r 0.00000460 meters
delta-r magnitude 0.00001113 meters

lambert4.m — perturbed motion solution — NLP solution

This MATLAB application demonstrates how to solve the J,-perturbed Earth orbit Lambert problem.
However, more sophisticated equations of motion can easily be implemented. The algorithm solves this
problem using a nonlinear programming technique. This script can solve both the flyby and rendezvous
problems. For the flyby problem, the program attempts to match all three components of the position
vector. For the rendezvous problem, the script attempts to match all three components of both the target
position and velocity vectors.

SNOPT algorithm implementation

This section provides details about the part of the 1ambert4 script that solves this nonlinear
programming (NLP) problem using the SNOPT algorithm. In this classic trajectory optimization
problem, the components of the initial and final delta-v vectors are the control variables and the scalar
magnitude of the flyby or rendezvous AV is the objective function or performance index.

MATLAB versions of SNOPT for several computer platforms can be found at Professor Philip Gill’s
web site which is located at http://cam.ucsd.edu/~peg/Software.html.

The SNOPT algorithm requires an initial guess for the control variables. For this example they are
determined from the two-body solution of Lambert’s problem. The algorithm also requires lower and
upper bounds for the control variables. These are determined from the initial guesses as follows:

% define lower and upper bounds for components of delta-v vectors
(kilometers/second)

for 1 = 1:1:3
x1lwr (i) = min(-1.1 * norm(xg(l:3)), -75.0);
xupr (i) = max(+1.1 * norm(xg(l:3)), +75.0);
end
if (otype == 2)
for i = 4:1:6
x1lwr (i) = min(-1.1 * norm(xg(4:6)), -75.0);
xupr(i) = max(+1l.1 * norm(xg(4:6)), +75.0);
end
end

The algorithm requires lower and upper bounds on the objective function. For this problem these
bounds are given by

% bounds on objective function

flow (1)
fupp (1)

0.0d0;
+Inf;

page 14

http://cam.ucsd.edu/~peg/Software.html

Orbital Mechanics with MATLAB

Finally, the NLP algorithm also requires the following state vector equality constraints.

Q

% enforce final position vector equality constraints

flow(2) = 0.0d0;
fupp(2) = 0.0d0;
flow(3) = 0.0d0;
fupp (3) = 0.0d0;
flow(4) = 0.0d0;
fupp(4) = 0.0d0;
if (otype == 2)

% enforce final velocity vector equality constraints

flow(5) = 0.0d0;

fupp (5) = 0.0d0;

flow(6) = 0.0d0;

fupp (6) = 0.0d0;

flow(7) = 0.0d0;

fupp(7) = 0.0d0;
end

The actual call to the SNOPT MATLAB interface function is as follows

[x, £, inform, xmul, fmul] = snopt(xg, xlwr, xupr, flow, fupp, 'tpbvp'):

where tpbvp is the name of the MATLAB function that solves Lambert’s problem and computes the
current value of the objective function and equality constraints. The following is the MATLAB source
code for this example.

function [f, g] = tpbvp(x)

oe

two point boundary value objective function
and state vector constraints

o\°

% input

% x = current delta-v vector

% output

% f(l) = objective function (delta-v magnitude)
% f£(2) = rx constraint delta

% £(3) = ry constraint delta

$ f(4) = rz constraint delta

$ f£(5) = vx constraint delta

% f(6) = vy constraint delta

$ f£(7) = vz constraint delta

o\

Orbital Mechanics with Matlab

page 15

Orbital Mechanics with MATLAB

oo 900000000000000000000

global otype neqg tetol
global ri vi tof rtarget vtarget drf dvf

[

% load current state vector of transfer orbit

xi(1l) = ri(1);
x1i(2) = ri(2);
x1i(3) = ri(3);
xi(4) = vi(l) + x(1);
xi(5) = vi(2) + x(2);
x1i(6) = vi(3) + x(3);

o)

% initial guess for step size (seconds)

[

% initial time (seconds)

[

% final time (seconds)
tf = tof;

% integrate equations of motion

xf = rkf78 ('j2egm', neq, ti, tf, h, tetol, xi);

% objective function (delta-v magnitude)

if (otype == 1)
% initial delta-v only (flyby)

f(l) = norm(x);
else

% total delta-v (rendezvous)

f(l) = norm(x(1:3)) + norm(x(4:6));

% final position vector equality constraints

f(2) = rtarget(l) - xf(1);
f(3) = rtarget(2) - xf(2);
f(4) = rtarget(3) - xf(3);
if (otype == 2)

% final velocity vector

page 16

Orbital Mechanics with MATLAB

vi(l) = xf(4) + x(4);
vi(2) = xf(5) + x(5);
vE(3) = x£f(6) + x(6);
end
if (otype == 2)

% enforce final velocity vector constraints

f(5) = vtarget(l) - vf(1l);

f(6) = vtarget(2) - vf(2);

f(7) = vtarget(3) - vf(3);
end

[

% save state vector deltas for print summary

for i = 1:1:3
drf(i) = £(1i + 1);

if (otype == 2)
% rendezvous

dvf(i) = £(i + 4);
end
end

oe

transpose objective function/constraints vector

£ =f;

o

no derivatives
g = [1;
The following is a typical user interaction with this MATLAB script.
program lambert4d
< perturbed Earth orbit Lambert problem >
trajectory type (1 = flyby, 2 = rendezvous)
21
classical orbital elements of the initial orbit

please input the semimajor axis (kilometers)
(semimajor axis > 0)
? 8000

please input the orbital eccentricity (non-dimensional)
(0 <= eccentricity < 1)
20

page 17

Orbital Mechanics with MATLAB

please input the orbital inclination (degrees)
(0 <= inclination <= 180)
? 28.5

please input the right ascension of the ascending node (degrees)
(0 <= raan <= 360)
? 100

please input the true anomaly (degrees)
(0 <= true anomaly <= 360)
20

classical orbital elements of the final orbit

please input the semimajor axis (kilometers)
(semimajor axis > 0)
? 8000

please input the orbital eccentricity (non-dimensional)
(0 <= eccentricity < 1)
20

please input the orbital inclination (degrees)
(0 <= inclination <= 180)
? 28.5

please input the right ascension of the ascending node (degrees)
(0 <= raan <= 360)
? 100

please input the true anomaly (degrees)
(0 <= true anomaly <= 360)
? 170

please input the transfer time in minutes
? 56

The following is the script output for this example. The first part of the display includes the two-body
solution for the initial guess and the optimization summary from SNOPT.

two-body guess for initial delta-v vector and magnitude

x—-component of delta-v 0.640625 meters/second
y-component of delta-v -4.677637 meters/second
z-component of delta-v 0.098476 meters/second
delta-v magnitude 4.722328 meters/second
Major Minors Step nCon Feasible Optimal MeritFunction nS Penalty
0 2 1 2.8E+01 1.5E-02 4.7223280E-03 r
1 0 3.6E-03 2 2.8E+01 1.5E-02 4.7179225E-03 nr
2 0 1.4E-03 3 2.8E+01 5.4E+00 6.4112054E-03 3.0E-06 s
3 0 1.0E+00 4 1.6E+00 4.0E-02 3.7031413E-02 8.9E-04
4 0 1.0E+00 5 1.2E-03 7.7E-05 5.5116083E-02 1.2E-02 m
5 0 1.0E+00 6 (2.6E-09) (1.2E-10) 5.5116073E-02 1.2E-02 n c
5 0 1.0E+00 6 (2.6E-09) (1.2E-10) 5.5116073E-02 1.2E-02 n c
EXIT -- optimal solution found

page 18

Orbital Mechanics with MATLAB

program lambert4

< perturbed Earth orbit Lambert problem >

orbital elements and state vector of the initial orbit

sma (km)
+8.00000000000000e+003

raan (deg)
+1.00000000000000e+002

rx (km)
-1.38918542133544e+003

vx (kps)
-6.10905247177800e+000

eccentricity
+0.00000000000000e+000

true anomaly (degq)
+0.00000000000000e+000

ry (km)
+7.87846202409766e+003

vy (kps)
-1.07719077733820e+000

inclination (degq)
+2.85000000000000e+001

arglat (deg)
+0.00000000000000e+000

rz (km)
+0.00000000000000e+000

vz (kps)
+3.36811407992746e+000

+0.

+1.

+8.

+7.

argper (deq)
00000000000000e+000

period (min)
18684693788431e+002

rmag (km)
00000000000000e+003

vmag (kps)
05868645918807e+000

orbital elements and state vector of the transfer orbit after the initial delta-v

sma (km)
+8.00723489628470e+003

raan (deg)
+1.00000000000000e+002

rx (km)
-1.38918542133544e+003

vx (kps)
-6.08536330087357e+000

eccentricity
+9.68258357783872e-004

true anomaly (degq)
+3.38913746907494e+002

ry (km)
+7.87846202409766e+003

vy (kps)
-1.07550945881513e+000

inclination (deq)
+2.89460861700788e+001

arglat (deg)
+0.00000000000000e+000

rz (km)
+0.00000000000000e+000

vz (kps)
+3.41785116756283e+000

+2.

+1.

+8.

+7.

argper (deq)
10862530925057e+001

period (min)
18845731080622e+002

rmag (km)
00000000000000e+003

vmag (kps)
06187465926933e+000

orbital elements and state vector of the transfer orbit prior to the final delta-v

sma (km)
+8.00712131217672e+003

raan (deg)
+9.98377817600496e+001

rx (km)
+1.65787953981183e+002

vx (kps)
+6.20553203642353e+000

eccentricity
+9.65333285374587e-004

true anomaly (deq)
+2.29029908765670e+001

ry (km)
-7.97076711063437e+003

vy (kps)
-1.53599271890635e-001

inclination (deg)
+2.89453516511177e+001

arglat (deg)
+1.70142259361283e+002

rz (km)
+6.62861993417606e+002

vz (kps)
-3.36706800686018e+000

orbital elements and state vector of the final orbit

sma (km)
+7.99999999999668e+003

raan (deg)
+1.00000000000015e+002

rx (km)
+1.65787953981183e+002

vx (kps)
+6.22908767828918e+000

eccentricity
+4.93755404440110e-013

true anomaly (degq)
+1.69999999999961e+002

ry (km)
-7.97076711063437e+003

vy (kps)
-1.46280648235324e-001

inclination (degq)
+2.85000000000013e+001

arglat (deg)
+1.69999999999961e+002

rz (km)
+6.62861993417606e+002

vz (kps)
-3.31694485894215e+000

page 19

+1.

+1.

+7.

+7

+0.

+1.

+7.

+7.

argper (deg)
47239268484716e+002

period (min)
18843202316575e+002

rmag (km)
99999999999834e+003

vmag (kps)

.06182466181549e+000

argper (deg)
00000000000000e+000

period (min)
18684693788357e+002

rmag (km)
99999999999834e+003

vmag (kps)
05868645918807e+000

Orbital Mechanics with MATLAB

initial delta-v vector and magnitude

x—-component of delta-v 23.689171 meters/second
y-component of delta-v 1.681319 meters/second
z-component of delta-v 49.737088 meters/second
delta-v magnitude 55.116073 meters/second

final position vector error components and magnitude

x—component of delta-r 0.00000271 meters
y-component of delta-r -0.00000181 meters
z-component of delta-r -0.00000246 meters
delta-r magnitude 0.00000409 meters
transfer time 56.000000 minutes

Here’s the rendezvous option solution for the same initial conditions.

two-body guess for initial delta-v vector and magnitude

x—-component of delta-v 0.640625 meters/second
y-component of delta-v -4.677637 meters/second
z-component of delta-v 0.098476 meters/second
delta-v magnitude 6.678380 meters/second

two-body guess

for final delta-v vector and magnitude

x—-component of delta-v -0.279895 meters/second

y-component of delta-v 4.704854 meters/second

z-component of delta-v -0.293927 meters/second

delta-v magnitude 4.722328 meters/second

total delta-v 9.444656 meters/second

Major Minors Step nCon Feasible Optimal MeritFunction
0 2 1 2.8E+01 1.5E-02 9.4446559E-03
1 0 3.2E-03 2 2.8E+01 1.5E-02 9.4374421E-03
2 0 1.4E-03 3 2.8E+01 9.2E-01 1.2614431E-02
3 0 1.0E+00 4 1.5E+00 9.6E-02 7.2963247E-02
4 0 1.0E+00 5 1.2E-03 3.1E-04 1.1097988E-01
5 0 1.0E+00 6 (4.9E-09) (1.5E-09) 1.1097984E-01
5 0 1.0E+00 6 (4.9E-09) (1.5E-09) 1.1097984E-01

EXIT -- optimal solution found

program lambertd

< perturbed Earth orbit Lambert problem >

orbital elements and state vector of the initial orbit

sma (km) inclination

+8.00000000000000e+003

eccentricity
+0.00000000000000e+000

raan (deg)
+1.00000000000000e+002

true anomaly (deg)
+0.00000000000000e+000

arglat

page 20

(deg)
+0.00000000000000e+000

nS Penalty

NN O

(deqg)
+2.85000000000000e+001

.5E-06
.8E-03
.5E-02
.5E-02
.5E-02

+0.00000000000000e+000

+1.18684693788431e+002

rx (km)
-1.38918542133544e+003

vx (kps)
-6.10905247177800e+000

Orbital Mechanics with MATLAB

ry (km)
+7.87846202409766e+003

vy (kps)
-1.07719077733820e+000

rz (km)
+0.00000000000000e+000

vz (kps)
+3.36811407992746e+000

+8.

+7.

rmag (km)
00000000000000e+003

vmag (kps)
05868645918807e+000

orbital elements and state vector of the transfer orbit after the initial delta-v

sma (km)
+8.00723489628503e+003

raan (deg)
+1.00000000000000e+002

rx (km)
-1.38918542133544e+003

vx (kps)
-6.08536330087376e+000

eccentricity
+9.68258357800548e-004

true anomaly (degq)
+3.38913746911629e+002

ry (km)
+7.87846202409766e+003

vy (kps)
-1.07550945881474e+000

inclination (deg)
+2.89460861700790e+001

arglat (deg)
+0.00000000000000e+000

rz (km)
+0.00000000000000e+000

vz (kps)
+3.41785116756291e+000

+2.

+1.

+8.

+7.

argper (deg)
10862530883712e+001

period (min)
18845731080629e+002

rmag (km)
00000000000000e+003

vmag (kps)
06187465926947e+000

orbital elements and state vector of the transfer orbit prior to the final delta-v

sma (km)
+8.00712131217702e+003

raan (deg)
+9.98377817600496e+001

rx (km)
+1.65787953978664e+002

vx (kps)
+6.20553203642318e+000

eccentricity
+9.65333285316214e-004

true anomaly (degq)
+2.29029908751038e+001

ry (km)
-7.97076711063496e+003

vy (kps)
-1.53599271892845e-001

inclination (deg)
+2.89453516511178e+001

arglat (deg)
+1.70142259361262e+002

rz (km)
+6.62861993419040e+002

vz (kps)
-3.36706800685980e+000

orbital elements and state vector of the final orbit

sma (km)
+7.99999999998343e+003

raan (deg)
+1.00000000000018e+002

rx (km)
+1.65787953978664e+002

vx (kps)
+6.22908767828381e+000

initial delta-v vector

x—component of delta-v
y-component of delta-v
z-component of delta-v

delta-v magnitude

eccentricity
+2.05098256580623e-012

true anomaly (deq)
+1.69999999999938e+002

ry (km)
-7.97076711063496e+003

vy (kps)
-1.46280648236246e-001

and magnitude

final delta-v vector and magnitude

x—component of delta-v
y-component of delta-v
z—-component of delta-v

inclination (deg)
+2.84999999999968e+001

arglat (deg)
+1.69999999999938e+002

rz (km)
+6.62861993419040e+002

vz (kps)
-3.31694485893854e+000

23.689171 meters/second

1.681319 meters/second
49.737088 meters/second
78.476379 meters/second
23.555642 meters/second

7.318624 meters/second
50.123148 meters/second

page 21

+1.

+1.

+7.

+7.

+0.

+1.

+7.

+7.

argper (deqg)
47239268486159e+002

period (min)
18843202316582e+002

rmag (km)
99999999999899e+003

vmag (kps)
06182466181505e+000

argper (deg)
00000000000000e+000

period (min)
18684693788062e+002

rmag (km)
99999999999899e+003

vmag (kps)
05868645918165e+000

Orbital Mechanics with MATLAB

delta-v magnitude 55.863767 meters/second

total delta-v 110.979840 meters/second

final position vector error components and magnitude

x—-component of delta-r 0.00000523 meters
y-component of delta-r -0.00000123 meters
z-component of delta-r -0.00000390 meters
delta-r magnitude 0.00000664 meters

final velocity vector error components and magnitude

x—-component of delta-v 0.00000001 meters/second
y-component of delta-v 0.00000000 meters/second
z-component of delta-v -0.00000000 meters/second
delta-v magnitude 0.00000001 meters/second
transfer time 56.000000 minutes

Lambert Functions

This section describes two MATLAB functions that solve the two-body form of Lambert’s boundary
value problem.

glambert.m — Gooding’s solution of Lambert’s problem

This two-body Lambert function has the following syntax.

function [vi, vf] = glambert(cbmu, svl, sv2, tof, nrev)

oe

Gooding's solution of Lambert's problem

% input

% cbmu = central body gravitational constant

% svl = initial 6-element state vector (position + velocity)
% sv2 = final 6-element state vector (position + velocity)
% tof = time of flight (+ posigrade, - retrograde)

% nrev = number of full revolutions

% (positive for long period orbit,

% negative for short period orbit)

% output

% wvi = initial velocity vector of the transfer orbit

% vf = final velocity vector of the transfer orbit

page 22

Orbital Mechanics with MATLAB

lambfunc.m — Gedeon’s solution of Lambert’s problem

The algorithm used in this MATLAB function is based on the method described in “A Practical Note on
the Use of Lambert’s Equation” by Geza Gedeon, AIAA Journal, Volume 3, Number 1, 1965, pages
149-150. This iterative solution is valid for elliptic, parabolic and hyperbolic transfer orbits which may
be either posigrade or retrograde, and involve one or more revolutions about the central body.
Additional information can also be found in G. S. Gedeon, “Lambertian Mechanics”, Proceedings of the
12" International Astronautical Congress, Vol. I, 172-190.

The elliptic form of the general Lambert Theorem is

t= Z[(1_k)mmk(a-sina):L(ﬁ—sinﬁ)]

where k may be either +1 (posigrade) or —1 (retrograde), and m is the number of revolutions about the
central body.

The Gedeon algorithm introduces the following variable

and solves the problem with a Newton-Raphson procedure. In this equation, a is the semimajor axis of
the transfer orbit and
s_hith+C
2

This algorithm also makes use of the following constant:
w=+,[1- ¢
s

The function to be solved iteratively is given by:

B 1 1-k 1/2 1/2 1/2 1/2 1/2 1/2 , \L/2
N(Z)—Z|Z|1/221,2{ > mz+k|[2" - [z (1-2) }—[w|z| — w2t —wlz[* (1-w?z) }}

The Newton-Raphson algorithm also requires the derivative of this equation given by

N'(7) = dN 1 k w’ 3N (Z)
(Z)—E— |Z|21/2 (1_2)1/2 - (l—WZZ)M T ol2

page 23

Orbital Mechanics with MATLAB

The iteration for z is as follows:

Z..,=2 —
n+1 n N ,(Zn)
This Lambert function has the following syntax.
function [statev, nsol] = lambfunc(ri, rf, tof, direct, revmax)

% solve Lambert's orbital two point boundary value problem

% input

$ ri = initial ECI position vector (kilometers)

$ rf = final ECI position vector (kilometers)

$ tof = time of flight (seconds)

% direct = transfer direction (1 = posigrade, -1 = retrograde)
% revmax = maximum number of complete orbits

% output

% nsol = number of solutions

o

statev = matrix of state vector solutions of the
transfer trajectory after the initial delta-v

o

% statev(l, sn) = position vector x component
% statev (2, sn) = position vector y component
% statev (3, sn) = position vector z component
% statev (4, sn) = velocity vector x component
% statev (5, sn) = velocity vector y component
% statev (6, sn) = velocity vector z component
% statev(7, sn) = semimajor axis

% statev (8, sn) = orbital eccentricity

% statev (9, sn) = orbital inclination

% statev(l sn) = argument of perigee

% statev(l sn) = right ascension of the ascending node
$ statev (1l sn) = true anomaly

oe

where sn is the solution number

Please note the value of the central body gravitational constant (mu) should be passed to this function
with a global statement located in the main MATLAB script.

page 24

