
Orbital Mechanics with MATLAB

page 1

Appendix A

Precession and Nutation

This appendix summarizes the numerical methods used to compute precession and nutation in this

MATLAB script. The algorithms used to compute precession and nutation were ported to MATLAB

using the Fortran version of NOVAS 3.1.

Precession

Precession is the slow drift of the Earth’s rotational axis due mainly to the gravitational attraction of the

Sun and Moon. The precession matrix transforms coordinates referred to the mean Earth equator and

equinox of J2000 to coordinates measured with respect to the mean Earth equator and equinox of date.

The precession algorithm used in this MATLAB script is based on the method described in “Expressions

for IAU 2000 Precession Quantities”, by N. Capitaine, P. T. Wallace, and J. Chapront, Astronomy and

Astrophysics, 412, 567-586 (2003).

The precession matrix is determined from the following transformation

 () () () ()3 1 3 1 0A A AR R R R   = − −P

The precession angles are given by

2 3 4 5

2 3 4 5

0

2

5038 .481507 1 .0790069 0 .0011404 0 .000132851 0 .0000000951

0 .025754 0 .0512623 0 .00772503 0 .000000467 0 .0000003337

10 .556403 2 .3814292 0 .00121197

A

A

A

t t t t t

t t t t t

t t t



 



    = − − + −

    = − + − − +

  = − − 3 4 50 .000170663 0 .0000000560t t + −

where 0 84381 .406 = and the unit of these angular arguments is arc seconds. The fundamental time

argument is given by the expression

 ()1 2 / 36525t JD JD= −

In this equation 1JD is the Julian Date of the first epoch and 2JD is the Julian Date at 12 hours on

January 1, 2000, both measured on the Terrestrial Time (TT) scale.

The syntax of this MATLAB function that performs these calculations is

function pos2 = preces (tjd1, pos1, tjd2)

% this function precesses equatorial rectangular coordinates from

% one epoch to another. the coordinates are referred to the mean

% dynamical equator and equinox of the two respective epochs. see

% explanatory supplement to the astronomical almanac, pp. 103-104,

% and capitaine et al. (2003), astronomy and astrophysics 412,

% 567-586.

Orbital Mechanics with MATLAB

page 2

% input

% tjd1 = tdb julian date of first epoch

% pos1 = position vector, geocentric equatorial rectangular

% coordinates, referred to mean dynamical equator and

% equinox of first epoch

% tjd2 = tdb julian date of second epoch

% output

% pos2 = position vector, geocentric equatorial rectangular

% coordinates, referred to mean dynamical equator and

% equinox of second epoch

% note: either tjd1 or tjd2 must be 2451545.0 (j2000.0) tdb

Nutation

The nutation function implemented in this MATLAB script is based on the methods described in

“Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the

Earth’s interior”, P. M. Mathews, T. A. Herring and B. A. Buffett, Journal of Geophysical Research,

Vol. 107, No. B4, 2002.

The high precision nutation calculations in this script are based on the IAU 2000A nutation algorithm

and the low precision form uses the IAU 2000K algorithm.

The nutation in longitude is determined from a series of the form

 ()
1

sin cos
N

i i i

i

A At A  
=

  = + +

Likewise, the nutation in obliquity is determined from

 ()
1

cos sin
N

i i i

i

B B t B  
=

  = + +

where

14

1

i iN F =

In this last summation, iN are integer multipliers and iF are fundamental arguments. For the IAU

2000A version, 1365N = in the summation of which 678 of the terms are luni-solar contributions and

687 are planetary contributions to nutation. For the IAU 2000K version, 488N = and 323 terms are

luni-solar contributions and 165 are planetary contributions.

The first five angular elements are luni-solar Delaunay arguments given by the following expressions;

Orbital Mechanics with MATLAB

page 3

 1 mean anomaly of the Moon

485868 .249036 1717915923 .2178

F l

t

= =

 = +

 2 mean anomaly of the Sun

1287104 .79305 129596581 .0481

F l

t

= =

 = +

()3 is the mean longitude of the Moon

335779 .526232 1739527262 .8478

F F L L

t

= = −

 = +

 4 mean elongation of the Moon from the Sun

1072260 .70369 1602961601 .2090

F D

t

= =

 = +

 5 mean longitude of the ascending node of the lunar orbit

450160 .398036 6962890 .5431

F

t

=  =

 = −

The remaining arguments are planetary mean longitudes given by the following expressions;

6

7

8

9

10

11

4.402608842 2608.7903141574

3.176146697 1021.3285546211

1.753470314 628.3075849991

6.203480913 334.0612426700

0.599546497 52.9690962641

0.874016757 21.3299104

Me

Ve

E

Ma

J

Sa

F L t

F L t

F L t

F L t

F L t

F L

= = +

= = +

= = +

= = +

= = +

= = +

12

13

2

14

960

5.481293872 7.4781598567

5.311886287 3.8133035638

0.02438175 0.00000538691

U

Ne

A

t

F L t

F L t

F p t t

= = +

= = +

= = +

In these equations, the time argument t is the number of Julian centuries since J2000 and is given by

()2451545.0 / 36525t JD= − where JD is the Terrestrial Time (TT) Julian Date. Additional

information about these arguments can be found in “Numerical Expressions for Precession Formulae

and Mean Elements for the Moon and Planets”, Astronomy and Astrophysics, 282: 663-683.

The nutation matrix is given by

0 0

0 0 0 0

0 0 0 0

cos sin cos sin sin

sin cos cos cos cos sin sin cos cos cos sin cos

sin sin cos sin cos cos sin cos sin sin cos cos

    

           

           

 −  −  
 =   +  −
 

  −  +  

N

Orbital Mechanics with MATLAB

page 4

In this matrix 0 is the mean obliquity of the ecliptic and 0  = +  is the true obliquity. The mean

obliquity of the ecliptic is calculated from

0 2 3

0 23 26 21 .448 46 .8150 0 .00059 0 .001813T T T     = − − +

where ()2451545.0 / 36525T JD= − and JD is the TDB Julian Date.

The nutation matrix can also be expressed as a combination of individual rotations according to

 () () ()1 3 1 0  = − − +N R R R

where

 () ()1 3

1 0 0 cos sin 0

0 cos sin sin cos 0

0 sin cos 0 0 1

R R

 

     

 

   
   = = −
   

−      

This function requires initialization the first time it is called. This can be accomplished by placing the

following statement in the main script along with a global inutate statement.

 inutate = 1;

The following is the MATLAB source code for the function that calls the correct nutation function. This

function determines which algorithm to call based on the value of mode which is set in the main script.

function [dpsi, deps] = nod (t)

% this function returns the values for nutation in longitude and

% nutation in obliquity for a given tdb julian date.

% t = tdb time in julian centuries since j2000.0 (in)

% dpsi = nutation in longitude in arcseconds (out)

% deps = nutation in obliquity in arcseconds (out)

% ported from NOVAS 3.1

%%%%%%%%%%%%%%%%%%%%%%%

seccon = 180.0d0 * 3600.0d0 / pi;

% t0 = tdb julian date of epoch j2000.0 (tt)

t0 = 2451545.0d0;

% get method/accuracy mode

mode = getmod;

Orbital Mechanics with MATLAB

page 5

t1 = t * 36525.0d0;

% evaluate nutation series

% resulting nutation in longitude and obliquity in arc seconds

if (mod (mode, 2) == 0)

 % high accuracy mode -- iers 2000a

 [dp, de] = nut2000a (t0, t1);

else

 % low accuracy mode -- iau 2000k

 [dp, de] = nut2000k (t0, t1);

end

dpsi = dp * seccon;

deps = de * seccon;

The following is the calling syntax for the high precision version of the nutation function which is

named nut2000a.m.

function [dpsi, deps] = nut2000a (date1, date2)

% nutation based on iau 2000a theory

% input

% date1, date2 = tt julian date

% (julian date = date1 + date2)

% output

% dpsi = nutation in longitude in radians

% deps = nutation in obliquity in radians

The low precision version is named nut2000k.m with the following syntax. The input and output for

this function are the same as those for the nut2000a function described above.

function [dpsi, deps] = nut2000k (date1, date2)

Orbital Mechanics with MATLAB

page 6

Appendix B

Time Scales

This appendix is a brief explanation of the time scales used in this MATLAB script.

Coordinated Universal Time, UTC

Coordinated Universal Time (UTC) is the time scale available from broadcast time signals. It is a

compromise between the highly stable atomic time and the irregular earth rotation. UTC is the

international basis of civil and scientific time.

Terrestrial Time, TT

Terrestrial Time is the time scale that would be kept by an ideal clock on the geoid - approximately, sea

level on the surface of the Earth. Since its unit of time is the SI (atomic) second, TT is independent of

the variable rotation of the Earth. TT is meant to be a smooth and continuous “coordinate” time scale

independent of Earth rotation. In practice TT is derived from International Atomic Time (TAI), a time

scale kept by real clocks on the Earth's surface, by the relation TT = TAI + 32s.184. It is the time scale

now used for the precise calculation of future astronomical events observable from Earth.

TT = TAI + 32.184 seconds

TT = UTC + (number of leap seconds) + 32.184 seconds

Barycentric Dynamical Time, TDB

Barycentric Dynamical Time is the time scale that would be kept by an ideal clock, free of gravitational

fields, co-moving with the solar system barycenter. It is always within 2 milliseconds of TT, the

difference caused by relativistic effects. TDB is the time scale now used for investigations of the

dynamics of solar system bodies.

TDB = TT + periodic corrections

where typical periodic corrections (USNO Circular 179) are

()

()

()

()

()

()

0.001657sin 628.3076 6.2401

0.000022sin 575.3385 4.2970

0.000014sin 1256.6152 6.1969

0.000005sin 606.9777 4.0212

0.000005sin 52.9691 0.4444

0.000002sin 21.3299 5.5431

0.000010 sin 628.3076 4.24

TDB TT T

T

T

T

T

T

T T

= + +

+ +

+ +

+ +

+ +

+ +

+ +()90 +

In this equation, the coefficients are in seconds, the angular arguments are in radians, and T is the

number of Julian centuries of TT from J2000; T = (Julian Date(TT) – 2451545.0) / 36525.

Orbital Mechanics with MATLAB

page 7

The following is the MATLAB source code for the routine ported from the NOVAS Fortran subroutine.

Notice that the NOVAS name was simply times and the ported version is named novas_times to

avoid confusion with the built-in MATLAB function.

function [ttjd, secdif] = novas_times (tdbjd)

% this function computes the terrestrial time (tt) julian date

% corresponding to a barycentric dynamical time (tdb) julian date.

% the expression used in this version is a truncated form of a

% longer and more precise series given by fairhead & bretagnon

% (1990) a&a 229, 240. the result is good to about 10 microseconds.

% input

% tdbjd = tdb julian date

% output

% ttjd = tt julian date

% secdif = difference tdbjd - ttjd, in seconds

% ported from NOVAS 3.0

%%%%%%%%%%%%%%%%%%%%%%%

% t0 = tdb julian date of epoch j2000.0 (tt)

t0 = 2451545.0d0;

t = (tdbjd - t0) / 36525.0d0;

% expression given in usno circular 179, eq. 2.6

secdif = 0.001657d0 * sin(628.3076d0 * t + 6.2401d0) ...

 + 0.000022d0 * sin(575.3385d0 * t + 4.2970d0) ...

 + 0.000014d0 * sin(1256.6152d0 * t + 6.1969d0) ...

 + 0.000005d0 * sin(606.9777d0 * t + 4.0212d0) ...

 + 0.000005d0 * sin(52.9691d0 * t + 0.4444d0) ...

 + 0.000002d0 * sin(21.3299d0 * t + 5.5431d0) ...

 + 0.000010d0 * t * sin(628.3076d0 * t + 4.2490d0);

ttjd = tdbjd - secdif / 86400.0d0;

