Orbital Mechanics with MATLAB

Appendix A

Precession and Nutation

This appendix summarizes the numerical methods used to compute precession and nutation in this
MATLAB script. The algorithms used to compute precession and nutation were ported to MATLAB
using the Fortran version of NOVAS 3.1.

Precession

Precession is the slow drift of the Earth’s rotational axis due mainly to the gravitational attraction of the
Sun and Moon. The precession matrix transforms coordinates referred to the mean Earth equator and
equinox of J2000 to coordinates measured with respect to the mean Earth equator and equinox of date.

The precession algorithm used in this MATLAB script is based on the method described in “Expressions
for IAU 2000 Precession Quantities”, by N. Capitaine, P. T. Wallace, and J. Chapront, Astronomy and
Astrophysics, 412, 567-586 (2003).

The precession matrix is determined from the following transformation
P= Rs(ZA)'Rl(_wA)'R3(_V/A)'R1 (€0)
The precession angles are given by

v, =5038".481507t —1".0790069t* — 0".0011404t> + 0".000132851t* — 0".0000000951t°
w, = &, —0".025754t +0".0512623t> — 0".00772503t° — 0”.000000467t* +0".0000003337t°

7 =10".556403t — 2".3814292t° — 0".00121197t° +0".000170663t* — 0".0000000560t°

where &, =84381".406 and the unit of these angular arguments is arc seconds. The fundamental time

argument is given by the expression
t=(JD, - JD,) /36525

In this equation JD, is the Julian Date of the first epoch and JD, is the Julian Date at 12 hours on
January 1, 2000, both measured on the Terrestrial Time (TT) scale.

The syntax of this MATLAB function that performs these calculations is

function pos2 = preces (tjdl, posl, tjd2)

% this function precesses equatorial rectangular coordinates from
% one epoch to another. the coordinates are referred to the mean
% dynamical equator and equinox of the two respective epochs. see
% explanatory supplement to the astronomical almanac, pp. 103-104,
% and capitaine et al. (2003), astronomy and astrophysics 412,

% 567-586.

page 1

Orbital Mechanics with MATLAB

s input

tjdl = tdb julian date of first epoch

o\©

o\©

posl = position vector, geocentric equatorial rectangular
coordinates, referred to mean dynamical equator and
equinox of first epoch

o

o

% tjd2 = tdb julian date of second epoch
% output
% pos2 = position vector, geocentric equatorial rectangular

o\°

coordinates, referred to mean dynamical equator and
equinox of second epoch

o\©

% note: either tjdl or tjd2 must be 2451545.0 (j2000.0) tdb
Nutation

The nutation function implemented in this MATLAB script is based on the methods described in
“Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the
Earth’s interior”, P. M. Mathews, T. A. Herring and B. A. Buffett, Journal of Geophysical Research,
Vol. 107, No. B4, 2002.

The high precision nutation calculations in this script are based on the IAU 2000A nutation algorithm
and the low precision form uses the IAU 2000K algorithm.

The nutation in longitude is determined from a series of the form
N
Ay =Y (A +At)sind+ A'cosd
i=1
Likewise, the nutation in obliquity is determined from
N
Ae=> (B, +Blt)cosd +B/sin®

i=1

where

0= NF

1

In this last summation, N, are integer multipliers and F, are fundamental arguments. For the IAU

2000A version, N =1365 in the summation of which 678 of the terms are luni-solar contributions and
687 are planetary contributions to nutation. For the IAU 2000K version, N =488 and 323 terms are
luni-solar contributions and 165 are planetary contributions.

The first five angular elements are luni-solar Delaunay arguments given by the following expressions;

page 2

Orbital Mechanics with MATLAB

F, =1 = mean anomaly of the Moon
=485868".249036 +1717915923".2178t

F, =1"= mean anomaly of the Sun
=1287104".79305 +129596581".0481t

F,=F =L-Q (L is the mean longitude of the Moon)
=335779".526232 +1739527262".8478t

F, = D = mean elongation of the Moon from the Sun
=1072260".70369 +1602961601".2090t

F, = 2= mean longitude of the ascending node of the lunar orbit
=450160".398036 —6962890".5431t

The remaining arguments are planetary mean longitudes given by the following expressions;

F, =L, =4.402608842 + 2608.7903141574t
F, =L, =3.176146697 +1021.3285546211t
F, = L. =1.753470314 + 628.3075849991t

F

9 =

L, = 6.203480913 + 334.0612426700t
F, = L, =0.599546497 + 52.9690962641t
F, = L, =0.874016757 + 21.3299104960t
F, =L, =5.481293872 + 7.4781598567t
F, =L, =5.311886287 + 3.8133035636t

F., = p, = 0.02438175t +0.00000538691t

In these equations, the time argument t is the number of Julian centuries since J2000 and is given by
t=(JD —2451545.0) / 36525 where JD is the Terrestrial Time (TT) Julian Date. Additional

information about these arguments can be found in “Numerical Expressions for Precession Formulae
and Mean Elements for the Moon and Planets”, Astronomy and Astrophysics, 282: 663-683.

The nutation matrix is given by

COSAy —sinAy cos g, —sinAysing,
N =|sSinAycose COSAy COSECOSE,+SiNgSiNg, COSA COSgCOSE, —SiNECOSE,
SinAysing COSAwsSinecosg, —CoSeSing, COSAwsSingsing,+C0SeCOSE,

page 3

Orbital Mechanics with MATLAB

In this matrix &, is the mean obliquity of the ecliptic and ¢ = g, + A¢ is the true obliquity. The mean
obliquity of the ecliptic is calculated from

&, = 23°26'21".448 — 46".8150T —0".00059T * +0".001813T*
where T =(JD —2451545.0)/36525 and JD is the TDB Julian Date.

The nutation matrix can also be expressed as a combination of individual rotations according to

N=R,(-¢)R;(-Ay)R,(+&)

where
1 0 0 cosd singd O
R (0)=|0 cosd sing R,(0)=|—sin@ cosd 0
0 -sind cosé@ 0 0 1

This function requires initialization the first time it is called. This can be accomplished by placing the
following statement in the main script along with a global inutate statement.

inutate = 1;

The following is the MATLAB source code for the function that calls the correct nutation function. This
function determines which algorithm to call based on the value of mode which is set in the main script.

function [dpsi, deps] = nod (t)

oo

s this function returns the values for nutation in longitude and
nutation in obliquity for a given tdb julian date.

oe

$ t = tdb time in julian centuries since 32000.0 (in)
% dpsi = nutation in longitude in arcseconds (out)
% deps = nutation in obliquity in arcseconds (out)

\O

$ ported from NOVAS 3.1

seccon = 180.0d0 * 3600.0d0 / pi;

% t0 = tdb julian date of epoch j2000.0 (tt)
t0 = 2451545.0d0;

¥ get method/accuracy mode

mode = getmod;

page 4

Orbital Mechanics with MATLAB

tl = t * 36525.0d0;
% evaluate nutation series
% resulting nutation in longitude and obliquity in arc seconds

if (mod (mode, 2) == 0)

% high accuracy mode -- iers 2000a
[dp, de] = nut2000a (tO0, tl1);

else
% low accuracy mode -- iau 2000k

[dp, de] = nut2000k (t0, tl1);

end
dpsi = dp * seccon;
deps = de * seccon;

The following is the calling syntax for the high precision version of the nutation function which is
named nut2000a.m.

function [dpsi, deps] = nut2000a (datel, date2)
% nutation based on iau 2000a theory

input

o°

oe

datel, date2 = tt julian date
(julian date datel + date2)

oe

% output
% dpsi = nutation in longitude in radians
% deps = nutation in obliquity in radians

The low precision version is named nut2000k .m with the following syntax. The input and output for
this function are the same as those for the nut2000a function described above.

function [dpsi, deps] = nut2000k (datel, date2)

page 5

Orbital Mechanics with MATLAB

Appendix B

Time Scales
This appendix is a brief explanation of the time scales used in this MATLAB script.
Coordinated Universal Time, UTC

Coordinated Universal Time (UTC) is the time scale available from broadcast time signals. Itis a
compromise between the highly stable atomic time and the irregular earth rotation. UTC is the
international basis of civil and scientific time.

Terrestrial Time, TT

Terrestrial Time is the time scale that would be kept by an ideal clock on the geoid - approximately, sea
level on the surface of the Earth. Since its unit of time is the Sl (atomic) second, TT is independent of
the variable rotation of the Earth. TT is meant to be a smooth and continuous “coordinate” time scale
independent of Earth rotation. In practice TT is derived from International Atomic Time (TAI), a time
scale kept by real clocks on the Earth's surface, by the relation TT = TAI + 325.184. It is the time scale
now used for the precise calculation of future astronomical events observable from Earth.

TT = TAI + 32.184 seconds

TT = UTC + (number of leap seconds) + 32.184 seconds

Barycentric Dynamical Time, TDB

Barycentric Dynamical Time is the time scale that would be kept by an ideal clock, free of gravitational
fields, co-moving with the solar system barycenter. It is always within 2 milliseconds of TT, the
difference caused by relativistic effects. TDB is the time scale now used for investigations of the
dynamics of solar system bodies.

TDB =TT + periodic corrections

where typical periodic corrections (USNO Circular 179) are

TDB =TT +0.001657sin (628.3076T +6.2401)
+0.000022sin (575.3385T +4.2970)
+0.000014sin (1256.6152T +6.1969)
+0.000005sin (606.9777T +4.0212)
+0.000005sin (52.9691T +0.4444)
+0.0000025in (21.3299T +5.5431)
+0.000010T sin (628.3076T +4.2490) + - -

In this equation, the coefficients are in seconds, the angular arguments are in radians, and T is the
number of Julian centuries of TT from J2000; T = (Julian Date(TT) — 2451545.0) / 36525.

page 6

Orbital Mechanics with MATLAB

The following is the MATLAB source code for the routine ported from the NOVAS Fortran subroutine.
Notice that the NOVAS name was simply times and the ported version is named novas times to
avoid confusion with the built-in MATLAB function.

function [ttjd, secdif] = novas_ times (tdbjd)

o° 0P o° o°

o

o\°

oe

o\°

oe

o

oe

t0

t

o

°

this function computes the terrestrial time (tt) julian date
corresponding to a barycentric dynamical time (tdb) julian date.
the expression used in this version is a truncated form of a
longer and more precise series given by fairhead & bretagnon
(1990) a&a 229, 240. the result is good to about 10 microseconds.
input

tdbjd = tdb julian date

output

ttjd = tt julian date

secdif = difference tdbjd - ttjd, in seconds
ported from NOVAS 3.0

t0 = tdb julian date of epoch 32000.0 (tt)

= 2451545.0d0;

= (tdbjd - t0) / 36525.0d0;

expression given in usno circular 179, eq. 2.6

secdif = 0.001657d0 * sin(628.3076d0 * t + 6.2401d0)

+ 0.000022d0 * sin(575.3385d0 * t + 4.2970d0)

+ 0.000014d0 * sin(1256.6152d0 * t + 6.1969d0)

+ 0.000005d0 * sin(606.9777d0 * t + 4.0212d0)

+ 0.000005d0 * sin(52.9691d0 * t + 0.4444d0)

+ 0.000002d0 * sin(21.3299d0 * t + 5.5431d0)

+ 0.000010d0 * t * sin(628.3076d0 * t + 4.2490d0);

ttjd = tdbjd - secdif / 86400.0d0;

page 7

