A MATLAB Script for Calculating Hyperbolic Coordinates

This brief memo is the user’s manual for a MATLAB script named demo_hyper that can be used to
calculate C, (twice the specific (per unit mass) orbital energy), RLA (the right ascension ¢, ) and DLA

(declination o, ) of the asymptote of a hyperbolic trajectory. The script can use both Cartesian state
vector (position and velocity vectors) and classical orbital elements as the data source.

This computer program assumes that the hyperbolic targets, state vector and classical orbital elements
are all in the same Earth-centered-inertial (ECI) coordinate system.

Input data file

The demo hyper MATLAB script is “data-driven” by a simple text file created by the user. This
section describes two typical input data files. Each data item within an input file is preceded by one or
more lines of annotation text. Do not delete any of these annotation lines or increase or decrease the
number of lines reserved for each comment. The annotation line also includes the correct units and
when appropriate, the valid range of the input.

The following information illustrates the contents of a typical state vector (position and velocity vectors)
input data file.

LR I R I S b S b I S db I S 2 I Sb b I S db 4

* state vector data file
kA hhk Kk khkhkhkhkhkrkhkhxkhkkxkhhkkhkhk*x*k*x%k

eci position vector (kilometers)

-6.28143245744413e+003
-1.71886519445504e+003
-8.16419427413681e+002

eci velocity vector (kilometers/second)

+3.30316298967422e+000
-9.56155991173246e+000
-5.28351302498913e+000

Here are the contents of a typical classical orbital elements input data file.

AKAkAIAKAXAA AR A XA A XA A XA A XA A KKK, K

* orbital elements data file
KA A KA KR A KR AR A A A AR A KA KA KK A hk*k k%

semimajor axis (kilometers)
(semimajor axis > 0)
-45361.7896303620

orbital eccentricity (non-dimensional)

(0 <= eccentricity < 1)
1.14468873590488
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orbital inclination (degrees)
(0 <= inclination <= 180)
28.6442848562298

argument of perigee (degrees)
(0 <= argument of perigee <= 360)
195.039684255199

right ascension of the ascending node (degrees)
(0 <= RAAN <= 360)
2.03552732637654

true anomaly (degrees)
(0 <= true anomaly <= 360)
0.0

Script example

After typing demo_hyper at the MATLAB command line, the script will ask you for the type of
coordinate data to use for the calculations with the following prompt;

please input the type of coordinates (1 = state vector, 2 = orbital elements)
?

The script will then ask you to select the name of a data file with the following screen display.

) Please select the input file to read lll

\7)[) | ¥ Windows (C:) ¥ ommatlab_new ¥ demo_hyper_mathworks v - @I Search demo_hy... @‘
A )
7 Favorites = Name - | Date modified | Type

I Desktop
I3 Downloads

Organize ¥  New folder B

| versionl 1/29/2014 6:42 AM File folde
A oedata.dat 1/29/2014 8:13 AM DAT File
@ svdata.dat 1/29/2014 8:10 AM DAT File

=i Recent Places
& Norton Zone

] Libraries

_*, Documents
$ Music

15, Pictures

B videos

#d Homegroup

& Computer
& Windows (C:)

S0 spHC (E:) =l | i
File name: I‘ j (*.dat) j
Open ‘Vl Cancel |

A

Be sure to select a data file that is compatible with the coordinate type you selected previously.

The file type defaults to names with a * . dat filename extension. However, you can select any
demo hyper compatible ASCII data file by selecting the Files of type: field or by typing the name of
the file directly in the File name: field.
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The following is a typical user interaction with demo hyper and calculation results.

A MATLAB Script for Computing Hyperbolic Coordinates

please input the type of coordinates (1

? 2

rv2hyper function
specific orbital energy
asymptote right ascension

asymptote declination

orb2hyper function
asymptote right ascension

asymptote declination

state vector

rx (km)
-6.28143245744429%9e+03 -1

vx (kps)

+3.30316298967423e+00 -9.

classical orbital elements

sma (km)

-4.53617896303620e+04 +1.

raan (deg)

+2.03552732637654e+00 +0.

Technical Discussion

8.787141
349.621260

-6.697329

349.621260

-6.697329

ry (km)

vy (kps)

state vector, 2 = orbital elements)

(km/sec) **2
degrees

degrees

degrees

degrees

rz (km)

.71886519445511e+03 -8.16419427413715e+02

vz (kps)

56155991173233e+00 -5.28351302498906e+00

eccentricity

inclination (degq)

14468873590488e+00 +2.86442848562298e+01

true anomaly

(deq) arglat (deq)

00000000000000e+00 +1.95039684255199%e+02

rmag (km)
+6.56334000000017e+03

vmag (kps)
+1.14127044808507e+01

argper (deqg)
+1.95039684255199e+02

This section provides additional details about the numerical algorithms used in this MATLAB script.
The first part describes the algorithm used to convert a state vector to hyperbolic coordinates. The

section part of this discussion describes the algorithm used to convert classical orbital elements to the
corresponding hyperbolic coordinates.

Using position and velocity vectors

The asymptote unit vector of a hyperbolic orbit is given by

C0SO, COScr,,

§=<:coso, sina,

sing,
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In this expression, «, is the right ascension of the asymptote (RLA), and ¢, is the declination of the
asymptote (DLA).

The asymptote unit vector at any trajectory time can be computed from

§= 1h2 {[@Jhxe—e}z 1 {[@Jhxe—e}
1+C372 H 1+C3IZ H

U

where h and e are the angular momentum and orbital eccentricity vectors, respectively. In the second
expression, p is the semiparameter of the hyperbolic orbit which can be computed from

p=a(l-¢’)
The angular momentum and eccentricity vectors are computed using the following equations;

h=rxv

=l e

C3 is the “twice specific” orbital energy which is determined from the position r and velocity v vectors
according to

The right ascension and declination of the asymptote can be computed from components of the unit
asymptote vector according to

a :tan‘l(s s)

0

The syntax of the MATLAB function that performs these calculations is as follows.

function [c3, rla, dla] = rv2hyper (mu, rsc, vsc)

oe

convert position and velocity wvectors to
hyperbolic ¢3, rla and dla

oe

% input

% mu = gravitational constant (km**3/sec**2)

% 1rsc = spacecraft position vector (kilometers)

% vsc = spacecraft velocity vector (kilometers/second)
% output
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o°

c3
rla
dla

specific orbital energy (km/sec)**2
right ascension of asymptote (radians)
declination of asymptote (radians)

o

o

Using classical orbital elements

The asymptote unit vector in terms of the classical orbital elements of a hyperbolic orbit is given by

cosQcos(w+6)—sinQsin(w+ #)cosi
§=1sinQcos(w+ ) +cosQsin(w+ 6)cosi
sin(w+6)sini

In this expression, Q is the right ascension of the ascending node (RAAN), @ is the argument of
periapsis and @ is the true anomaly.

The declination of the asymptote (DLA) is given by

8, =sin"*[sin(w+6,)sini |=sin™[sin(u,, )sini |
where U, = o+ 6, is the argument of latitude of the launch asymptote. In this expression @, is the true
anomaly of the launch hyperbola “at infinity” and is a function of the orbital eccentricity e of the

hyperbola according to 6, =cos™(-1/e).

From the following two expressions

sin(a, — Q) = AN
tani

cos(a, —Q) = cost,
C0SO,

the right ascension of the asymptote (RLA) can be determined from

o —Q+tan‘1[tan5°° cosqu

tani ' coso,

Please note that the inverse tangent in these expressions is a four quadrant calculation.

The syntax of the MATLAB function that performs these calculations is as follows.

function [shat, rasc_asy, decl asy] = orb2hyper (ocev)

oe

this function converts classical orbital elements
of a hyperbolic orbit to asymptote coordinates

oe

o°

input
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% oev(l) = semimajor axis (kilometers)

% oev(2) = orbital eccentricity (non-dimensional)

% (0 <= eccentricity < 1)

% oev(3) = orbital inclination (radians)

% (0 <= inclination <= pi)

% oev(4) = argument of perigee (radians)

% (0 <= argument of perigee <= 2 pi)

% oev(5) = right ascension of ascending node (radians)
% (0 <= raan <= 2 pi)

% oev(6) = true anomaly (radians)

% (0 <= true anomaly <= 2 pi)

% output

% shat = asymptote unit vector

% rasc_asy = right ascension of asymptote (radians)
% decl asy = declination of asymptote (radians)

Algorithm resources

An Introduction to the Mathematics and Methods of Astrodynamics, Richard H. Battin, AIAA Education
Series, 1987.

Spacecraft Mission Design, Charles D. Brown, AIAA Education Series, 1992.

Orbital Mechanics, Vladimir A. Chobotov, AIAA Education Series, 2002.
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