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A MATLAB Script for Parametric Analysis of Minimum TLI Delta-V 
Lunar Transfer Trajectories – OTB Version 

 

This document is the user’s guide for a MATLAB script called tli_sweep_otb that can be used to 

perform a parametric analysis of two-body and “perturbed” lunar transfer trajectories.  The software 

assumes that trans-lunar injection (TLI) occurs impulsively from a circular Earth park orbit.  The 

software initially solves for the minimum TLI delta-v using a two-body Lambert solution for the transfer 

trajectory from Earth park orbit to the center of the Moon.  The perturbed solution uses this two-body 

answer as an initial guess for solving the two-point boundary-value problem subject to perturbations due 

to a non-spherical Earth gravity model and optionally, the point-mass gravity of the Sun. 

 

This MATLAB script uses a nonlinear programming (NLP) method from the Optimization Toolbox for 

both optimization tasks required for the lunar transfer problem implemented in this script.  The solar and 

lunar coordinates required by this script are computed using the JPL DE430 ephemeris. 

 

Interacting with the script 
 

When the tli_sweep_otb script is started, the software will display the following screen which allows 

the user to select a data file for processing. 

 

 
 

The file type defaults to names with a *.in filename extension.  However, you can select any 

tli_sweep_otb compatible ASCII data file. 

 

Input data file format and contents 
 

The tli_sweep_otb MATLAB script is “data-driven” by a simple text file created by the user.  This 

section describes a typical input data file.  In the following discussion the actual input file contents are in 

courier bold font and all explanations are in times italic font. 

 

Each data item within an input file is preceded by one or more lines of annotation text.  Do not delete 

any of these annotation lines or increase or decrease the number of lines reserved for each comment.  

However, you may change them to reflect your own explanation.  The annotation line also includes the 

correct units and when appropriate, the valid range of the input. 
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The first four lines of any input file are reserved for user comments.  These lines are ignored by the 

software.  However, the input file must begin with four and only four initial text lines. 
 

********************************************* 

* data file for tli_sweep_otb.m MATLAB script 

* tli_sweep1.in     July 16, 2021 

********************************************* 
 

The first input defines the type of orbital motion to model during the trajectory optimization. 
 

type of optimization 

 1 = two-body orbital motion 

 2 = perturbed orbital motion 

----------------------------- 

2 
 

The next inputs define the calendar date of the TLI maneuver.  Be sure to include all four digits of the 

calendar year. 
 

initial calendar date (month, day, year) 

9, 1, 2013 
 

The next input specifies the type of TLI maneuver.  Please see the Technical Discussion later in this 

document for an explanation of this maneuver. 
 

type of TLI maneuver (1 = ascending, 2 = descending) 

2 
 

The next two inputs define the value of the altitude and orbital inclination of the initial circular Earth 

park orbit. 
 

park orbit altitude (kilometers) 

185.32 
 

park orbit inclination (degrees) 

28.5 
 

The duration of the lunar transfer trajectory in hours is set by this next input. 
 

transfer time (hours) 

84.0 
 

The name of the Earth gravity model data file is specified in this next statement. 
 

name of Earth gravity model data file 

------------------------------------- 

egm96.dat 

 

The next two inputs define the order and degree of the gravity model to use during the simulation. 
 

order of the Earth gravity model (zonals) 

----------------------------------------- 

8 
 

degree of the Earth gravity model (tesserals) 

--------------------------------------------- 

8 
 

The next integer input determines if the simulation should include the point-mass gravity of the Sun 

during the trajectory optimization. 
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include point-mass gravity of the Sun (1 = yes, 0 = no) 

------------------------------------------------------- 

1 
 

The total simulation duration and time step size of the parametric sweep are specified using these next 

two inputs. 
 

simulation duration (days) 

90 
 

simulation step size (days) 

0.25 

 

The final input is the name of the data file created by the software. 
 

name of summary data file 

tli_sweep1.txt 

 

Script example 
 

This section contains plots of the behavior of the TLI characteristics for a two-body, descending node 

transfer for a period of three months at a step size of 0.25 days.  The initial calendar date and time is 0 

hours UTC on August 1, 2013 and the transfer time from TLI until lunar encounter is 84 hours.  The first 

plot shows the magnitude of the TLI impulsive delta-v as a function of the calendar date. 

 

 
 

The next two plots illustrate the variation of the RAAN of the circular park orbit and the true anomaly 

location of the TLI impulse as a function of the TLI calendar date. 
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The final two plots illustrate the geocentric declination of the Moon at the encounter time and the 

evolution of the geocentric orbital inclination of the Moon. 

 

     
 

These plots are saved to disk files in tiff format. 

 

The following printout illustrates the first five days of the ASCII data file created by the software. 

 
time (days)    delta-v (mps)      RAAN (deg)       tanom (deg)      C3 (km/sec)^2   rasc moon (deg)   decl moon (deg) 

      0.0000    3150.02069561     138.00961114     200.07071238       -1.71164825     150.84989646        6.88023307 

      0.2500    3149.62288247     142.90173568     197.87523718       -1.72035461     153.82937906        5.87662682 

      0.5000    3149.21971487     147.81512273     195.65007537       -1.72917784     156.81142964        4.85291194 

      0.7500    3148.81263300     152.74946810     193.39886425       -1.73808640     159.79784314        3.81167716 

      1.0000    3148.40299341     157.70471293     191.12519626       -1.74705060     162.79049282        2.75560191 

      1.2500    3147.99206325     162.68098569     188.83265144       -1.75604271     165.79132040        1.68745656 

      1.5000    3147.58101586     167.67854192     186.52483009       -1.76503704     168.80232542        0.61010247 

      1.7500    3147.17092753     172.69770104     184.20538601       -1.77401005     171.82555366       -0.47350832 

      2.0000    3146.76277581     177.73877949     181.87806107       -1.78294035     174.86308441       -1.56033374 

      2.2500    3146.35743907     182.80201957     179.54672145       -1.79180873     177.91701649       -2.64724273 

      2.5000    3145.95569746     187.88751284     177.21539618       -1.80059813     180.98945285       -3.73101696 

      2.7500    3145.55823538     192.99511743     174.88831860       -1.80929358     184.08248354       -4.80835315 

      3.0000    3145.16564515     198.12436837     172.56997157       -1.81788214     187.19816692       -5.87586616 

      3.2500    3144.77843210     203.27438007     170.26513666       -1.82635276     190.33850903       -6.93009315 

      3.5000    3144.39702090     208.44374061     167.97894796       -1.83469617     193.50544086       -7.96749878 

      3.7500    3144.02176298     213.63039747     165.71695097       -1.84290469     196.70079368       -8.98448171 

      4.0000    3143.65294511     218.83153504     163.48516626       -1.85097206     199.92627228       -9.97738276 

      4.2500    3143.29079881     224.04344488     161.29015789       -1.85889324     203.18342634      -10.94249466 

      4.5000    3142.93551064     229.26139084     159.13910508       -1.86666416     206.47362019      -11.87607389 

      4.7500    3142.58723310     234.47947224     157.03987532       -1.87428149     209.79800126      -12.77435468 

      5.0000    3142.24609597     239.69049079     155.00109562       -1.88174242     213.15746788      -13.63356545 
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Perturbed orbital motion graphics and data 

 

The following plots illustrate the park orbit true anomaly, RAAN and TLI delta-v magnitude for the 

perturbed orbital motion option for the first 60 days of the previous example.  This plot includes the 

effect of the point-mass gravity of the Sun along with an 8 by 8 Earth gravity model. 

 

 
 

 
 

Here is the data for the first two days for the perturbed orbital motion simulation. 

 
time (days)    delta-v (mps)      RAAN (deg)       tanom (deg)      C3 (km/sec)^2   rasc moon (deg)   decl moon (deg) 

      0.0000    3152.29546089     138.06172651     199.92780258       -1.66186086     150.84989646        6.88023307 

      0.2500    3151.91467875     142.96363268     197.72425000       -1.67019539     153.82937906        5.87662682 

      0.5000    3151.57490656     147.88653492     195.49396659       -1.67763274     156.81142964        4.85291194 

      0.7500    3151.12556692     152.83196524     193.23308390       -1.68746702     159.79784314        3.81167716 

      1.0000    3150.80095143     157.79541866     190.95651149       -1.69457229     162.79049282        2.75560191 

      1.2500    3150.41701164     162.78253567     188.65588224       -1.70297503     165.79132040        1.68745656 

      1.5000    3150.03483212     167.79046940     186.34308673       -1.71133941     168.80232542        0.61010247 

      1.7500    3149.62396902     172.82072977     184.01432373       -1.72033089     171.82555366       -0.47350832 

      2.0000    3149.24062914     177.86988898     181.68669750       -1.72872026     174.86308441       -1.56033374 
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Here is a description of the items captured in this data file. 

 
time (days) = elapsed time from initial TLI calendar date in days 

 

delta-v (mps) = magnitude of impulsive TLI maneuver in meters per second 

 
RAAN (deg) = park orbit right ascension of the ascending node in degrees 

 

tanom (deg) = park orbit true anomaly of the TLI maneuver in degrees 

 

C3 (km/sec)^2 = twice the specific orbital energy in kilometers^2/second^2 

 

rasc moon (deg) = geocentric right ascension of the Moon in degrees at arrival 

 

decl moon (deg) = geocentric declination of the Moon in degrees at arrival 

 
Technical discussion 
 

This section provides additional details about the numerical algorithms used in this computer program.  

The computational methods discussed here include solving the two body Lambert problem, the method 

used for propagating the spacecraft’s geocentric trajectory, the algorithms used for enforcing mission 

constraints.  A brief discussion of trajectory optimization is also provided along with the MATLAB 

source code for several important functions. 

 

Solving the two body Lambert problem 

 

The algorithm used in this MATLAB script is based on the method described in “A Procedure for the 

Solution of Lambert’s Orbital Boundary-Value Problem” by R. H. Gooding, Celestial Mechanics and 

Dynamical Astronomy 48: 145-165, 1990.  This iterative solution is valid for elliptic, parabolic and 

hyperbolic transfer orbits which may be either posigrade or retrograde, and involve one or more 

revolutions about the central body. 

 

A summary of the Lambert problem is described in Appendix A. 

 

Nonlinear programming problem 

 

A trajectory optimization problem can be described by a system of dynamic variables, 

 

 
( )

( )

t

t

 
=  
 

y
z

u
 

 

consisting of the state variables y  and the control variables u  for any time t.  In this discussion vectors 

are denoted in bold. 

 

The system dynamics are defined by a vector system of ordinary differential equations called the state 

equations that can be represented as follows: 

 

 ( ) ( ), , ,
d

t t t
dt

= =   
y

y f y u p  

 

where p is a vector of problem parameters that is not time dependent. 
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The initial dynamic variables at time 0t  are defined by ( ) ( )0 0 0 0, ,t t t   ψ ψ y u  and the terminal 

conditions at the final time ft  are defined by ( ) ( ), ,f f f ft t t   ψ ψ y u .  These conditions are called the 

boundary values of the trajectory problem. 

 

The problem may also be subject to path constraints of the form ( ) ( ), , 0t t t =  g y u . 

 

The basic nonlinear programming problem (NLP) is to determine the control vector history and problem 

parameters that minimize the scalar performance index or objective function given by 

 

 ( ) ( )0 0, , , ,f fJ t t t t  =  y y p  

 

while satisfying all the user-defined mission constraints. 

 

During the two-body trajectory optimization, the main control variable is the park orbit true anomaly at 

the time of the TLI maneuver.  The objective function or performance index is the scalar magnitude of 

the TLI delta-v vector.  The final boundary conditions are the Earth-centered-inertial (ECI) components 

of the Moon’s inertial position vector at encounter.  These equality boundary conditions can be 

expressed as 0p t− =r r  where pr  is the position vector of the Moon predicted by the software and tr  is 

the “targeted” or desired lunar position vector.  The targeted position vector is determined by evaluating 

the JPL ephemeris at the final encounter time with the Moon. 

 

During the perturbed orbital motion optimization, the control variables are the park orbit true anomaly at 

TLI, the park orbit right ascension of the ascending node (RAAN) and the ECI components of the TLI 

delta-v vector.  The objective function or performance index is the scalar magnitude of the TLI delta-v 

vector.  The final boundary conditions are the Earth-centered-inertial (ECI) components of the Moon’s 

inertial position vector at encounter.  This script option uses the park orbit RAAN and TLI maneuver 

true anomaly computed by the two-body solution as initial guesses for the perturbed motion 

optimization. 

 

Park orbit true anomaly 

 

An initial guess for the park orbit true anomaly at the time of the impulsive TLI maneuver is obtained 

iteratively.  This iteration involves setting the park orbit true anomaly equal to the argument of perigee 

of the TLI maneuver of the Earth-to-Moon elliptical transfer orbit.  This process is repeated until the 

change in true anomaly between successive iterations is small.  The argument of perigee of the transfer 

orbit is determined by re-solving the two-body Lambert problem which is a function of the current park 

state vector and the position and velocity vectors of the Moon at encounter. 

 

During the two-body numerical optimization, the true anomaly control variable is bounded according to 

1 130 30  −   +  where 1  is the true anomaly computed from the initial guess iteration. 

 

During the perturbed motion numerical optimization, the true anomaly is bounded according to 

10 10TB TB  −   +  and the park orbit RAAN is bounded according to 10 10TB TB −     +  

where TB  is the true anomaly and TB  the RAAN computed by the two-body solution. 
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Park orbit RAAN 

 

For a given TLI calendar date, there are two possible locations on the initial park orbit at which to 

perform the propulsive maneuver.  One opportunity occurs during the ascending part of the park orbit 

and the other during the descending motion.  The park orbit RAAN, p  at these two locations can be 

determined from spherical trigonometry relationships involving the park orbit inclination and the 

geocentric right ascension and declination of the Moon at encounter. 

 

In the two-body optimization, the park orbit RAAN is held fixed during the numerical optimization 

according to the RAAN option selected by the user. 

 

The equations implemented in this MATLAB script are as follows: 

 

ascending maneuver 

 1 tan
180 sin

tan

m
p m

pi


 −

 
 = − + +   

   
 

descending maneuver 

 1 tan
sin

tan

m
p m

pi


 −

 
 = −   

   
 

  where 

 

 right ascension of the Moon at encounter

 declination of the Moon at encounter

 park orbit inclination

m

m

pi





=

=

=

 

 

Modeling the perturbed orbital motion 

 

For the perturbed orbital motion option, the tli_sweep_otb MATLAB script implements a special 

perturbation technique which numerically integrates the vector system of second-order, nonlinear 

differential equations of motion given by 

 

 ( ) ( ) ( ) ( ), , , ,g st t t t= = +a r r r a r a r  

  where 
 UTC time

 inertial position vector

 acceleration due to Earth gravity

 acceleration due to the Sun

g

s

t =

=

=

=

r

a

a

 

 

Geocentric acceleration due to non-spherical Earth gravity 

 

The software uses a spherical harmonic representation of the Earth’s geopotential function given by 
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 ( ) ( ) ( )0 0

1 1 1

, , sin cos

n nn
m m m

n n n n n

n n m

R R
r C P u P u S m C m

r r r r r

  
   

 

= = =

   
  = + + +     

   
   

 

where   is the geocentric latitude,   is the geocentric east longitude and 2 2 2r r x y z= = + +  is the 

geocentric distance.  In this expression the S’s and C’s are harmonic coefficients of the geopotential, and 

the P’s are associated Legendre polynomials of degree n and order m with argument sinu = . 

 

The software calculates the acceleration due to the Earth’s gravity field with a vector equation derived 

from the gradient of the potential function expressed as 
 

 ( ) ( ), ,g t t= a r r  

 

This acceleration vector is a combination of pure two-body or point mass gravity acceleration and the 

gravitational acceleration due to higher order non-spherical terms in the Earth’s geopotential.  In terms 

of the Earth’s geopotential  , the inertial rectangular cartesian components of the acceleration vector 

are as follows, 

2 22 2 2

1 1z
x x y

r r x yr x y

  

  

     
 = − −   ++   

 

 

2 22 2 2

1 1z
y y x

r r x yr x y

  

  

     
 = − +    ++   

 

 

2 2

2

1 x y
z z

r r r

 

 

 +  
 = +      

 

 

The three partial derivatives of the geopotential with respect to , ,r    are given by 

 

 ( ) ( ) ( )
2 0

1
1 cos sin sin

nN n
m m m

n n n

n m

R
n C m S m P

r r r r

 
  

 = =

    
= − + +   

   
   

 

 ( ) ( ) ( )1

2 0

cos sin sin tan sin

nN n
m m m m

n n n n

n m

R
C m S m P m P

r r

 
    



+

= =

    
 = + −     

   
   

 

 ( ) ( )
2 0

cos sin sin

nN n
m m m

n n n

n m

R
m S m C m P

r r

 
  

 = =

    
= −   
   

   

 

  where 
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1

1

 radius of the Earth

 geocentric distance

,  harmonic coefficients

 geocentric declination sin

 longitude

 right ascension tan

 right ascension of Greenwich

m m

n n

g

g

R

r

S C

z

r

y

x



  





−

−

=

=

=

 
= =  

 

= = −

 
= =  

 

=

 

 

The right ascension is measure positive east of the vernal equinox, longitude is measured positive east of 

Greenwich, and declination is positive above the Earth’s equator and negative below. 

 

For 0m =  the coefficients are called zonal terms, when m n=  the coefficients are sectorial terms, and 

for 0n m   the coefficients are called tesseral terms. 

 

The Legendre polynomials with argument sin  are computed using recursion relationships given by: 

 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 0

1 2

1

1

1

2 1

1
sin 2 1 sin sin 1 sin

sin 2 1 cos sin ,                          0,  

sin sin 2 1 cos sin ,     0,  

n n n

n n

n n

m m m

n n n

P n P n P
n

P n P m m n

P P n P m m n

   

  

   

− −

−

−

−

− −

 = − − − 

= −  

= + −  =

 

 

where the first few associated Legendre functions are given by 

 

 ( ) ( ) ( )0 0 1

0 1 1sin 1,    sin sin ,    sin cosP P P    = = =  

and 0 for j

iP j i=  . 

 

The trigonometric arguments are determined from expansions given by 

 

 

( ) ( )

( ) ( )

( )

sin 2cos sin 1 sin 2

cos 2cos cos 1 cos 2

tan 1 tan tan

m m m

m m m

m m

   

   

  

= − − −

= − − −

= − +

 

 

The gravity model data file used in this simulation is a simple space delimited ASCII data file.  The 

following is a portion of a typical gravity model data file.  In this file, column one is the degree index, 

column two is the model order index, and columns three and four are the corresponding un-normalized 

gravity coefficients (zonals and tesserals, respectively). 

 
 2   0  -0.10826300D-02   0.00000000D+00 

 3   0   0.25321531D-05   0.00000000D+00 

 4   0   0.16109876D-05   0.00000000D+00 
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 5   0   0.23578565D-06   0.00000000D+00 

 6   0  -0.54316985D-06   0.00000000D+00 

 7   0   0.33237640D-06   0.00000000D+00 

 8   0   0.17721040D-06   0.00000000D+00 

 9   0   0.14459876D-06   0.00000000D+00 

10   0   0.23339780D-06   0.00000000D+00 

 

Gravity model coefficients are often published in normalized form.  The relationship between 

normalized , ,,l m l mC S  and un-normalized gravity coefficients , ,,l m l mC S  is given by the following 

expression: 

 
( ) ( )

( )

( )

1 2

,,

,, 0

!1

2 2 1 !

l ml m

l ml m m

CC l m

SS l l m

     +
=    

− + −     
 

 

where 0m  is equal to 1 if m is zero and equal to zero if m is greater than zero. 

 

Geocentric acceleration due to the point-mass gravity of the Sun 

 

The acceleration contribution of the Sun represented by a point mass is given by, 

 

 ( ) 3 3
, s sc e s

s s

s sc e s

t  − −

− −

 
= − + 

 
 

r r
a r

r r
 

  where 

 

 gravitational constant of the Sun

 position vector from the Sun to the trajectory

 position vector from the Earth to the Sun

s

s sc

e s



−

−

=

=

=

r

r

 

 

The first-order system of equations required by this computer program can be created from the second-

order system by the method of order reduction.  With the following definitions, 

 

 1 2 3 4 5 6 x y z x y zy r y r y r y v y v y v= = = = = =
 

where , ,x y zv v v  are x, y and z components of the velocity vector, the first-order system of differential 

equations is given by, 

 

1 2 3

4 5 63 3 3

x y z

yx z
e x s e y s e z s

y v y v y v

rr r
y a y a y a

r r r
  − − −

= = =

= − + = − + = − +

 

 

In these equations, e  is the gravitational constant of the Earth and ,  and x s y s z sa a a− − −  are the x, y and z 

point-mass gravitational contributions of the Sun. 

 

To avoid numerical problems, use is made of Professor Richard Battin’s ( )f q  function given by 
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 ( )
( )

2

3

3 3

1 1

k k
k k

k

q q
f q q

q

 + +
=  

+ +  

 

   where 

 
( )2T

k

k T

k k

q
−

=
r r s

s s
 

 

The point-mass acceleration due to n gravitational bodies can now be expressed as 

 

 ( )3
1

n
k

k k

k k

f q
d



=

= − +  r r s  

 

In these equations, ks  is the vector from the primary body to the secondary body, k  is the gravitational 

constant of the secondary body and k k= −d r s , where r is the position vector relative to the primary 

body.  The derivation of the ( )f q  functions is described in Section 8.4 of An Introduction to the 

Mathematics and Methods of Astrodynamics, Revised Edition”, by Richard H. Battin, AIAA Education 

Series, 1999. 

 

In this computer program the geocentric coordinates of the sun and moon are based on the JPL 

Development Ephemeris DE430.  These coordinates are evaluated in the Earth mean equator and 

equinox of J2000 coordinate system (EME2000).  The following figure illustrates the geometry of the 

EME2000 coordinate system.  The origin of this Earth-centered-inertial (ECI) inertial coordinate system 

is the geocenter and the fundamental plane is the Earth’s mean equator.  The z-axis of this system is 

normal to the Earth’s mean equator at epoch J2000, the x-axis is parallel to the vernal equinox of the 

Earth’s mean orbit at epoch J2000, and the y-axis completes the right-handed coordinate system.  The 

epoch J2000 is the Julian Date 2451545.0 which corresponds to January 1, 2000, 12 hours Terrestrial 

Time (TT).  Appendix B describes the relationship between these time systems. 
 

 
Figure 1.  Earth mean equator and equinox of J2000 coordinate system 
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The EME2000 coordinates of the sun and moon are transformed to the true-of-date system using a 

MICE frame definition.  The following are the contents of this frame definition file. 

 
      \begintext 

 

      Earth true-of-date frame definition 

 

      \begindata 

 

      FRAME_EARTH_TOD                =  398600 

      FRAME_398600_NAME              =  'EARTH_TOD' 

      FRAME_398600_CLASS             =  5 

      FRAME_398600_CLASS_ID          =  398600 

      FRAME_398600_CENTER            =  399 

      FRAME_398600_RELATIVE          = 'J2000' 

      FRAME_398600_DEF_STYLE         = 'PARAMETERIZED' 

      FRAME_398600_FAMILY            = 'TRUE_EQUATOR_AND_EQUINOX_OF_DATE' 

      FRAME_398600_PREC_MODEL        = 'EARTH_IAU_1976' 

      FRAME_398600_NUT_MODEL         = 'EARTH_IAU_1980' 

      FRAME_398600_ROTATION_STATE    = 'INERTIAL' 

 

This frame definition uses the IAU 1976 model for precession and the IAU 1980 model for nutation. 
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Algorithm Resources 
 

“Lunar Trajectories”, NASA TN D-866, August 1961. 

 

“Earth-Moon Trajectories”, JPL Technical Report No. 32-503, May 1, 1964. 

 

“Three-Dimensional Lunar Trajectories”, V. A. Egorov, Mechanics of Space Flight Series, Israel 

Program for Scientific Translations, Jerusalem 1969. 

 

“Circumlunar Trajectory Calculations”, MIT Instrumentation Laboratory Report R-353, April 1962. 

 

“Optimal Low Thrust Trajectories to the Moon”, John T. Betts and Sven O. Erb, SIAM Journal on 

Applied Dynamical Systems, Vol. 2, No. 2, pp. 144-170, 2003. 

 

“Integrated Algorithm for Lunar Transfer Trajectories Using a Pseudostate Technique”, R. V. Ramanan, 

AIAA Journal of Guidance, Control and Dynamics, Vol. 25, No. 5, September-October 2002, pp. 946-

952. 

 

“Nonimpact Lunar Transfer Trajectories Using the Pseudostate Technique”, R. V. Ramanan and V. 

Adimurthy, AIAA Journal of Guidance, Control and Dynamics, Vol. 28, No. 2, March-April 2005, pp. 

217-225. 

 

“Injection Conditions for Lunar Trajectories”, R. Kolenkiewicz and W. Putney, NASA TM X-55390, 

November 1965. 

 

“Coplanar Three-Body Trans-Earth Lunar Trajectory Simulation Methodology”, H. Ikawa, AIAA 88-

0381, AIAA 26th Aerospace Sciences Meeting, Reno, Nevada, January 11-14, 1988. 

 

“Earth-Moon Trajectories, 1964-69”, R. J. Richard, V. C. Clarke, Jr., R. Y. Roth and W. E. Kirhofer, 

JPL Technical Report No. 32-503, May 1, 1964. 

 

“Lunar Constants and Models Document”, JPL D-32296, September 23, 2005. 

 

“Lunar Flight Handbook”, NASA SP-34, Parts 1, 2, 3, 1963. 

 

“User’s Guide for SNOPT Version 7, A Fortran Package for Large-Scale Nonlinear Programming”, 

Philip E. Gill, Walter Murray and Michael A. Saunders, April 2007. 

 

Lunar Free-Return Trajectory Analysis with MATLAB 

https://www.mathworks.com/matlabcentral/fileexchange/73659-lunar-free-return-trajectory-analysis-

with-matlab-otb 

 

A MATLAB Script for Propagating Trajectories from the Earth to the Moon 

https://www.mathworks.com/matlabcentral/fileexchange/43067-a-matlab-script-for-propagating-

trajectories-from-the-earth-to-the-moon 

 

  

https://www.mathworks.com/matlabcentral/fileexchange/73659-lunar-free-return-trajectory-analysis-with-matlab-otb
https://www.mathworks.com/matlabcentral/fileexchange/73659-lunar-free-return-trajectory-analysis-with-matlab-otb
https://www.mathworks.com/matlabcentral/fileexchange/43067-a-matlab-script-for-propagating-trajectories-from-the-earth-to-the-moon
https://www.mathworks.com/matlabcentral/fileexchange/43067-a-matlab-script-for-propagating-trajectories-from-the-earth-to-the-moon
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Appendix A 
 

Numerical Solutions of Lambert’s Problem 
 

Lambert’s problem is concerned with the determination of a two-body orbit that passes between two 

positions within a specified time-of-flight.  This classic astrodynamics problem is also known as the 

orbital two-point boundary value problem (TPBVP). 

 

The time to traverse a trajectory depends only upon the length of the semimajor axis a of the transfer 

trajectory, the sum i fr r+  of the distances of the initial and final positions relative to a central body, and 

the length c of the chord joining these two positions.  This relationship can be stated functionally as 

( ), ,i ftof tof r r c a= + . 

 

From the following form of Kepler’s equation 
 

( )
3

0 sin
a

t t E e E


− = −  

 

we can write 

( )
3

0 0sin sin
a

t E E e E E


= − − −    

 

where E is the eccentric anomaly associated with radius r, 0E  is the eccentric anomaly at 0r , and 0t =  

when 0r r= . 

 

At this point we need to introduce the following trigonometric sun and difference identities: 
 

sin sin 2sin cos
2 2

cos cos 2sin sin
2 2

cos cos 2cos cos
2 2

a

a

a

  
 

  
 

  
 

− +
− =

− +
− = −

− +
+ =

 

 

If we let E =  and 0E = , and substitute the first trig identity into the second equation above, we 

have the following equation 
3

0 0
0 2sin cos

2 2

a E E E E
t E E e



− +  
= − −  

  
 

 

With the two substitutions given by 
 

0 0cos cos sin sin
2 2 2 2

E E E E
e

   + + − −
= =  
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the time equation becomes 

 

( )
3

2sin cos
2 2

a
t

   
 



− + 
= − − 

 
 

 

From the elliptic relationships given by 

 

( )

( )

2

1 cos

cos

sin 1

r a e E

x a E e

y a E e

= −

= −

= −

 

 

and some more manipulation, we have the following equations 

 

0 0

0 0

cos 1 1 1
2 2 2

sin 1 1 1
2 2 2

r r c r r c s

a a a a

r r c r r c s c

a a a a





+ + + 
= − − = − = − 
 

+ + − − 
= − + = − = − 
 

 

 

This part of the derivation makes use of the following three relationships 

 

0

2

0 0

2 2 2 2

0 0

cos cos 1
2 2 2

sin sin sin 1 cos
2 2 2 2

sin sin
2 2 2 2 2

r r

E E E E
e

x x y y c

a a a

   

   

   

− + +
= −

− + − + 
= −  

 

− + − −       
= + =       

       

 

 

With the use of the half angle formulas given by 

 

 sin sin
2 2 2 2

s s c

a a

  −
= =  

 

and several additional substitutions, we have the time-of-flight form of Lambert’s theorem 

 

 ( ) ( )
3

sin sin
a

t    


= − − −    

 

A discussion about the angles   and   can be found in “Geometrical Interpretation of the Angles   

and   in Lambert’s Problem” by J. E. Prussing, AIAA Journal of Guidance and Control, Volume 2, 

Number 5, Sept.-Oct. 1979, pages 442-443. 
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Gooding’s solution of Lambert’s problem 
 

The algorithm used in this script is based on the method described in “A Procedure for the Solution of 

Lambert’s Orbital Boundary-Value Problem” by R. H. Gooding, Celestial Mechanics and Dynamical 

Astronomy 48: 145-165, 1990.  This iterative solution is valid for elliptic, parabolic and hyperbolic 

transfer orbits which may be either posigrade or retrograde and involve one or more revolutions about 

the central body. 

 

Gedeon’s solution of Lambert’s problem 
 

Another practical numerical method for solving Lambert’s problem is described in “A Practical Note on 

the Use of Lambert’s Equation” by Geza Gedeon, AIAA Journal, Volume 3, Number 1, 1965, pages 

149-150.  This iterative solution is valid for elliptic, parabolic and hyperbolic transfer orbits which may 

be either posigrade or retrograde and involve one or more revolutions about the central body.  

Additional information can also be found in G. S. Gedeon, “Lambertian Mechanics”, Proceedings of the 

12th International Astronautical Congress, Vol. I, 172-190. 

 

The elliptic form of the general Lambert Theorem is 

 

 ( ) ( ) ( )
3

1 sin sin
a

t k m k    


= − + − −    

 

where k may be either +1 (posigrade) or –1 (retrograde), and m is the number of revolutions about the 

central body. 

 

The Gedeon algorithm introduces the following parameter 
 

 
2

s
z

a
=  

 

and solves the problem with a Newton-Raphson procedure.  In this equation, a is the semimajor axis of 

the transfer orbit and 

 1 2

2

r r c
s

+ +
=  

 

This algorithm also makes use of the following constant 

 

 1
c

w
s

=  −  

 

The function to be solved iteratively is given by: 

 

 ( ) ( ) ( )
1/ 21/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 2

1/ 2 1/ 2

1 1
1 1

22

k
N z m k z z z w z w z w z w z

z z


−   = + − − − − − −      
 

 

The Newton-Raphson algorithm also requires the derivative of this equation given by 
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 ( )
( ) ( )

( )3

1/ 2 1/ 21/ 2 1/ 22

31

2 21 1

N zdN k w
N z

dz z z w z

 
 

 = = − − 
− −  

 

 

The iteration for z is as follows, 

 
( )

( )1

n

n n

n

N z
z z

N z
+ = −


 

 

Perturbed motion solutions of Lambert’s problem 
 

Shooting method with state transition matrix updates 

 

An initial guess for this algorithm is created by first solving the two-body form of Lambert’s problem.  

At each shooting iteration, the initial delta-velocity vector is updated according to 

 

  
1

12

−
 =  V r  

 

where the error in the final position vector r  is determined from the difference between the two-body 

final position vector rtb  and the final position vector predicted by numerical integration rint  of the orbital 

equations of motion as follows 

 inttb = −r r r  

 

The new initial velocity vector can now be calculated from 

 

 1n n+ = + V V V  

 

The sub-matrix 12  of the full state transition matrix is as follows: 

 

 

0 0 0

12 0 0 0

0

0 0 0

/ / /

/ / /

/ / /

x x x y x z

y x y y y z

z x z y z z

      
   

 = =                  

r

V
 

 

This sub-matrix consists of the partial derivatives of the rectangular cartesian components of the final 

position vector with respect to the initial velocity vector. 

 

Nonlinear programming solution of Lambert’s problem 

 

In this classic trajectory optimization problem, the components of the initial and final delta-v vectors are 

the control variables and the scalar magnitude of the flyby or rendezvous V  is the objective function 

or performance index.  The NLP implementation uses the two-body solution for Lambert’s problem as 

its initial guess. 

 

For the flyby problem, this method attempts to match all three components of the position vector.  For 

the rendezvous problem, the NLP attempts to match all three components of both the target position and 

velocity vectors.  These mission requirements are formulated as equality constraints. 
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“A Practical Note on the Use of Lambert’s Equation” Geza Gedeon, AIAA Journal, Volume 3, Number 

1, 1965, pages 149-150. 

 

An Introduction to the Mathematics and Methods of Astrodynamics, Richard H. Battin, AIAA Education 

Series, 1987. 

 

Analytical Mechanics of Space Systems, Hanspeter Schaub and John L. Junkins, AIAA Education 

Series, 2003. 

 

Orbital Mechanics, Vladimir A. Chobotov, AIAA Education Series, 2002. 

 

Modern Astrodynamics, Victor R. Bond and Mark C. Allman, Princeton University Press, 1996. 

 

Spacecraft Mission Design, Charles D. Brown, AIAA Education Series, 1992. 
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APPENDIX B 
 

Time Systems 
 

This appendix is a brief explanation of the time systems used in this MATLAB script. 

 

Coordinated Universal Time, UTC 

 

Coordinated Universal Time (UTC) is the time scale available from broadcast time signals.  It is a 

compromise between the highly stable atomic time and the irregular earth rotation.  UTC is the 

international basis of civil and scientific time. 

 

Terrestrial Time, TT 
 

Terrestrial Time is the time scale that would be kept by an ideal clock on the geoid - approximately, sea 

level on the surface of the Earth.  Since its unit of time is the SI (atomic) second, TT is independent of 

the variable rotation of the Earth.  TT is meant to be a smooth and continuous “coordinate” time scale 

independent of Earth rotation.  In practice TT is derived from International Atomic Time (TAI), a time 

scale kept by real clocks on the Earth's surface, by the relation TT = TAI + 32s.184.  It is the time scale 

now used for the precise calculation of future astronomical events observable from Earth. 

 
TT = TAI + 32.184 seconds 

 

TT = UTC + (number of leap seconds) + 32.184 seconds 

 

Barycentric Dynamical Time, TDB 
 

Barycentric Dynamical Time is the time scale that would be kept by an ideal clock, free of gravitational 

fields, co-moving with the solar system barycenter.  It is always within 2 milliseconds of TT, the 

difference caused by relativistic effects.  TDB is the time scale now used for investigations of the 

dynamics of solar system bodies. 

 
TDB = TT + periodic corrections 

 

where typical periodic corrections (USNO Circular 179) are 

 

 

( )

( )

( )

( )

( )

( )

0.001657sin 628.3076 6.2401

0.000022sin 575.3385 4.2970

0.000014sin 1256.6152 6.1969

0.000005sin 606.9777 4.0212

0.000005sin 52.9691 0.4444

0.000002sin 21.3299 5.5431

0.000010 sin 628.3076 4.24

TDB TT T

T

T

T

T

T

T T

= + +

+ +

+ +

+ +

+ +

+ +

+ +( )90 +

 

 

In this equation, the coefficients are in seconds, the angular arguments are in radians, and T is the 

number of Julian centuries of TT from J2000; T = (Julian Date(TT) – 2451545.0) / 36525. 
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Leap seconds calculation 

 

The difference between International Atomic Time (TAI) and Universal Coordinated Time (UTC) is the 

number of current leap seconds.  International Atomic Time (TAI, Temps Atomique International) is a 

physical time scale with the unit of the SI (System International) second and derived from a statistical 

timescale based on a number of atomic clocks.  Coordinated Universal Time (UTC) is the time scale 

available from broadcast time signals.  It is a compromise between the highly stable atomic time and the 

irregular earth rotation.  UTC is the international basis of civil and scientific time. 

 

The calculation of leap seconds in this MATLAB script is performed by a function that reads a simple 

ASCII data file and evaluates the current value of leap seconds.  The leap second function must be 

initialized by including the following statements in the main script. 

 
% read leap seconds data file 

  
read_leap; 

 

The read_leap MATLAB function reads the contents of the following simple comma-separated-

variable (csv) two column data file.  The name of this file is tai-utc.dat. 

 
 2441317.5,  10.0 

 2441499.5,  11.0 

 2441683.5,  12.0 

 2442048.5,  13.0 

 2442413.5,  14.0 

 2442778.5,  15.0 

 2443144.5,  16.0 

 2443509.5,  17.0 

 2443874.5,  18.0 

 2444239.5,  19.0 

 2444786.5,  20.0 

 2445151.5,  21.0 

 2445516.5,  22.0 

 2446247.5,  23.0 

 2447161.5,  24.0 

 2447892.5,  25.0 

 2448257.5,  26.0 

 2448804.5,  27.0 

 2449169.5,  28.0 

 2449534.5,  29.0 

 2450083.5,  30.0 

 2450630.5,  31.0 

 2451179.5,  32.0 

 2453736.5,  33.0 

 2454832.5,  34.0 

 2456109.5,  35.0 

 2457204.5,  36.0 

 2457754.5,  37.0 

 

The first column of this data file is the Julian date, on the UTC time scale, at which the leap second 

became valid.  The second column is the leap second value, in seconds. 

 

Note that this data is passed between the leap second MATLAB functions by way of a global statement. 

 
global jdateleap leapsec 
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The MATLAB function that reads and evaluates the current value of leap seconds has the following 

syntax and single argument. 

 
function leapsecond = find_leap(jdate) 

  

% find number of leap seconds for utc julian date 

  

% input 

  

%  jdate = utc julian date 

  

% input via global 

  

%  jdateleap = array of utc julian dates 

%  leapsec   = array of leap seconds 

  

% output 

  

%  leapsecond = number of leap seconds 

 

The leap seconds data file should be updated whenever the International Earth Rotation and Reference 

Systems Service (IERS) announces a new leap second. 

 

The fundamental time argument for the JPL ephemeris function used in this MATLAB script is 

“ephemeris” time.  As implemented here, we assume this time argument to be Barycentric Dynamic 

Time (TDB).  Here’s example MATLAB code for evaluating the state vector of the moon, 

 
% ephemeris time at lunar encounter (seconds) 

  

etime = 86400.0 * (jdtdb0 - 2451545.0) + 3600.0 * x(1) + tof; 

  

% true-of-date geocentric state vector of the moon  

% (kilometers and kilometers/second) 

  

[rmoon, vmoon] = moon(etime); 

 

and the source code that creates the lunar state vector. 

 
function [rmoon, vmoon] = moon(etime) 

  

% true-of-date geocentric state vector of the moon 

  

% input 

  

%  etime = ephemeris time (seconds) 

  

% output 

  

%  rmoon = position vector of the moon (kilometers) 

%  vmoon = velocity vector of the moon (kilometers/second) 

  

% Orbital Mechanics with MATLAB 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

starg = mice_spkezr('Moon', etime, 'Earth_tod', 'NONE', 'Earth'); 

  

posvel = reshape([starg(:).state], 6, []); 

  

rmoon = posvel(1:3); 

  

vmoon = posvel(4) 



Orbital Mechanics with MATLAB 
 

page 23 

To report the time of important trajectory events in Universal Coordinated Time (UTC) or civil time, we 

need an algorithm to make this time conversion.  The following is the MATLAB source code for a 

function which iteratively performs this calculation using Brent’s root-finding method. 

 
function jdutc = tdb2utc (jdtdb) 

  

% convert TDB julian date to UTC julian date 

  

% input 

  

%  jdtdb = TDB julian date 

  

% output 

  

%  jdutc = UTC julian date  

  

% Orbital Mechanics with MATLAB 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

global jdsaved 

  

jdsaved = jdtdb; 

  

% convergence tolerance 

  

rtol = 1.0e-8; 

  

% set lower and upper bounds 

  

x1 = jdsaved - 0.1; 

  

x2 = jdsaved + 0.1; 

  

% solve for UTC julian date using Brent's method 

  

[xroot, froot] = brent ('jdfunc', x1, x2, rtol); 

  

 

jdutc = xroot; 

  

end 

 

This function calls the following MATLAB objective function during the calculations. 

 
function fx = jdfunc(jdin) 

  

% objective function for tdb2utc 

  

% input 

  

%  jdin = current value for UTC julian date 

  

% output 

  

%  fx = delta julian date 

  

% Orbital Mechanics with MATLAB 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

global jdsaved 

  

tai_utc = findleap(jdin); 
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fx = utc2tdb (jdin, tai_utc) - jdsaved; 

  

end 

 

Notice that this function requires the find_leap function which calculates the number of leap seconds 

for the current UTC Julian date value.  The jdfunc function is computing the difference between the 

TDB Julian date input by the user and the value computed by the utc2tdb MATLAB function.  The 

algorithm has converged whenever this value is less than or equal to the user-defined tolerance rtol. 

 
function leapsecond = find_leap(jdate) 

  

% find number of leap seconds for utc julian date 

  

% input 

  

%  jdate = utc julian date 

  

% input via global 

  

%  jdateleap = array of utc julian dates 

%  leapsec   = array of leap seconds 

  

% output 

  

%  leapsecond = number of leap seconds 

  

% Orbital Mechanics with MATLAB 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

global jdateleap leapsec 

  

ndata = length(jdateleap); 

  

if (jdate <= jdateleap(1)) 

     

    % date is <= 1972 

     

    leapsecond = leapsec(1); 

     

elseif (jdate >= jdateleap(ndata)) 

     

    % date is >= end of current data 

     

    leapsecond = leapsec(ndata); 

else 

     

    % find data within table 

     

   for i = 1:1:ndata - 1 

        

       if (jdate >= jdateleap(i) && jdate < jdateleap(i + 1)) 

           leapsecond = leapsec(i); 

            

           break; 

            

       end 

        

   end 

    

end 

 


