Orbital Mechanics with MATLAB

Geosynchronous Orbits

This document describes several MATLAB scripts that are useful for performing mission design
and analysis for Earth satellites in geosynchronous orbits. Geosynchronous satellites are usually
in equatorial or low-inclination orbits with an orbital period very close to the time required for
the Earth to complete one inertial rotation.

The algorithms implemented in these MATLAB scripts are based on the numerical techniques
described in the following two articles:

“East-west Stationkeeping Requirements of Nearly Synchronous Satellites Due to Earth’s
Triaxiality and Luni-Solar Effects”, A. Kamel, D. Ekman and R. Tibbitts, Celestial Mechanics 8
(1973) 129-148.

“On the Orbital Eccentricity Control of Synchronous Satellites”, A. Kamel and C. Wagner, The
Journal of the Astronautical Sciences, Vol. XXX, No. 1, pp. 61-73, January-March, 1982.

geosyncl.m —equilibrium longitudes and radii of geosynchronous satellites

This MATLAB script calculates the equilibrium longitudes and radii of geosynchronous
satellites based on the EGM96 gravity model of degree (zonals) and order (tesserals) 3. These are
the four Earth-relative locations where the proper combination of geocentric radius and east
longitude will minimize the longitudinal drift of satellites located at these points.

The following is the output created by this script.

program geosyncl

< equilibrium longitudes, radii and acceleration >

location east longitude radius drift acceleration
(degrees) (kilometers) (degrees/day”™2)
1 75.0602 42166 .2409 -2.2287387749e-012

2 162.0816 42166.2847 7.5875859013e-012

3 255.0880 42166.2411 2.0642563986e-012

4 348.5962 42166.2811 4.3719224598e-012

drift cycle period at longitude 75.0602 degrees 2339.2602 days

drift cycle period at longitude 255.0880 degrees = 2883.5951 days

The very small values of drift acceleration confirm that these east longitude locations are indeed
equilibrium points relative to a triaxial Earth.
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The fundamental astrodynamic constants of the EGM96 gravity model are:

r, = Earth equatorial radius =6378.1363 km

1 = Earth gravitational constant = 398600.4415 km?/sec?
@ = Earth inertial rotation rate =7.292115.10° radians/sec

The spherical harmonic and longitude coefficients of the EGM96 gravity model are determined

from the following expressions:
‘]nm = _\/Crfm + Sr?m

A = Lan (SﬂJ
m C

where n is the degree and m is the order of these terms.

The first few unnormalized gravity coefficients are given by
C,, =1.57446037456+10°°
S,, =—9.03803806639+10 "
C,, =2.1926385291710°°
S,, = 2.68424890297+10°'

The geocentric radius of a synchronous satellite is given by

a, =ay +0a,

where a, is the Keplerian or unperturbed geosynchronous semimajor axis which is given by

3
y7i
Ay = (a)_ezj

In this equation g is the gravitational constant of the Earth and «, is the inertial rotation rate of

the Earth. The “correction” of the Keplerian semimajor axis due to the triaxial shape of the Earth
and a gravity model of degree and order 3 for a satellite located at an east longitude denoted by
A, is given by the expression
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The equilibrium longitudes are the points at which the ratio g,/g, is equal to zero. The “g”
factors g, and g, are determined from the following two equations:

2 3
L, ) . 3. (r, ) .
g,=6J,, (a—qJ sin2( 4, —222)—?]31(61—“) sin( A, — 4y )

sk sk

3
+45],, (;—‘*j sin3( A, — Ay)

sk

2 3
0 r, 3 I,
g, :a_izzlszz[a—ij cosz(}ts—ﬁzz)—EJm(a—:kj cos( A, — Ay )

r 3
+135J,, (ﬂ] cos3( A, — )
a

sk

The normalized longitudinal acceleration can be determined from the following expression:

2 =18{C,, SiN2( 4, — Ayy) —0.25¢,,8iN (2, — Ay )+ 7.5¢,,8IN3(A, — Aoy )}

In this equation ¢, = J,,, (req/aS )n . The dimensional longitude acceleration is /Ta)ez . The
equilibrium longitudes are determined using Brent’s root-finding algorithm.

Equilibrium longitudes with negative g, values are stable while those with positive g, values are

unstable. The equilibrium longitudes located at 75.0602° and 255.088° are stable points with
drift cycle periods given by
T

T

After this MATLAB script has calculated the characteristics of the equilibrium points, it will ask
if you would like to create and display a plot of the longitudinal acceleration as a function of east
longitude of the satellite. This information can be used to graphically verify the calculations
described in this section. The following is the graphics display for this program option. The
location of each equilibrium point computed by this script is marked by a small circle.
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Longitudinal Acceleration of Geosynchronous Satellites

=
o

0.5

1
o
3}

Longitudinal acceleration (0.001 degrees/day/day)
I
AN

|
=
o

1 1 1 |
0 60 120 180 240 300 360
East longitude (degrees)

geosync2.m — required osculating semimajor axis

This MATLAB script can be used to estimate the initial osculating semimajor axis required for
an Earth satellite in geosynchronous orbit. The calculations include perturbations due to the
point-mass gravity of the Sun and Moon and non-spherical Earth gravity. The user can also elect
to include the effect of solar radiation pressure in the calculations. The script also allows the user
to specify the degree and order of the Earth gravity model to use during the solution.

The numerical method implemented in this script uses a combination of one-dimensional root-
finding and numerical integration of the orbital equations of motion to determine the initial
osculating semimajor axis that will result in a satellite orbit with a geosynchronous period
subject to the perturbations mentioned above.

The one-dimensional objective function used during the root-finding calculations is

where A, is the mean east longitude of the satellite’s subpoint at any time tand 4, is mean east
longitude at the initial time.

The true east longitude of the satellite subpoint at any time is given by

A(t):a)+Q+9—ag
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and the mean east longitude is
a()=0+Q+M -a,

In these two equations o is the argument of perigee, Q is the right ascension of the ascending
node, @ is the satellite’s true anomaly, M is the mean anomaly and «, is the Greenwich sidereal

time at any simulation time t.
The relationship between mean and true anomaly is given by Kepler’s equation for elliptic orbits,
M =E—esinE

via the following intermediate calculations for eccentric anomaly:

SinE =sing/1-¢e?
COSE =e+cosé@
E =tan™'(sinE,cosE)

The inverse tangent calculation in the last equation is a four quadrant operation.

The orbital period of a geosynchronous satellite in seconds is given by

where @, is the inertial rotation rate of the Earth in radians per second. The algorithm

numerically integrates the equations of motion for one or more orbital periods, evaluates the
mean east longitude objective function and uses Brent’s root-finding method to drive the
difference to a small tolerance. The user can specify how many orbital periods to use during the
solution process. More orbital periods will provide a better semimajor axis solution at the
expense of longer computation times. A value between 1 and 5 orbits is recommended.

During the solution the algorithm uses a bracketing interval for the required osculating
semimajor axis a given by
a,—-100<a<a,+100

where &, is the initial semimajor axis guess (in kilometers) provided by the user.

The geosync2 . m script will begin by prompting the user for the initial calendar date and
universal time. It will then ask for the degree and order of the gravity model and which
perturbations to include in the simulation. Finally, the script will prompt the user for the initial
orbital elements of the satellite. If the initial orbit is not equatorial (orbital inclination > 0), the
software assumes that the true east longitude input by the user is at the ascending node.
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The following is a typical interaction with this script.

program geosync2

< geosynchronous osculating semimajor axis >

initial calendar date and time

please input the calendar date
(1 <= month <= 12, 1 <= day <= 31, year = all digits!)
?1,1,1998

please input the universal time
(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60)
? 0,0,0

gravity model inputs

please input the degree of the gravity model (zonals)
(0 <= zonals <= 18)
? 4

please input the order of the gravity model (tesserals)

(0 <= tesserals <= 18)
? 4

orbital perturbations

would you like to include solar perturbations (y = yes, n = no)

7y

would you like to include lunar perturbations (y = yes, n = no)
?y
would you like to include srp perturbations (y = yes, n = no)

7y

solar radiation pressure inputs

please input the reflectivity constant (non-dimensional)
?1.85

please input the cross-sectional area (square meters)
? 10

please input the spacecraft mass (kilograms)
? 2000
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please input the numerical integration error tolerance
(a value between 1.0e-8 and 1.0e-10 is recommended)
? 1le-8

orbital elements menu
<1> user input

<2> data file

?1

initial orbital elements

please input the semimajor axis (kilometers)
(semimajor axis > 0)
? 42160

please input the orbital eccentricity (non-dimensional)
(0 <= eccentricity < 1)
?0

please input the orbital inclination (degrees)
(0 <= inclination <= 180)
?0

please input the satellite"s east longitude (degrees)
(0 <= east longitude <= 360)
? 45

please input the number of orbits to model
(integer >= 1)
?5

The software will display the initial and final east longitude and geodetic latitude. This
information indicates how well the orbit “closed” at the solution. The following is the program
output created for this example.

program geosync2

< geosynchronous osculating semimajor axis >

initial calendar date 01-Jan-1998

initial universal time 00:00:00

initial mean east longitude 45.000000 degrees
final mean east longitude 45.000000 degrees
initial geodetic latitude 0.000000 degrees
final geodetic latitude 0.272835 degrees
reflectivity constant 1.850000
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cross-sectional area 10.000000 sqr meters
spacecraft mass 2000.000000 kilograms
degree of gravity model 4.0

order of gravity model 4.0

number of orbits modeled 5.0

initial orbital elements

sma (km) eccentricity inclination (deg) argper (deg)
4.2166908088e+004 0.0000000000e+000 0.0000000000e+000 0.0000000000e+000

raan (deg) true anomaly (deg) arglat (deg) period (min)
0.0000000000e+000 1.4544413882e+002 1.4544413882e+002 1.4362080817e+003

After the script solves the problem it will ask the user if he or she would like to create a graphics
display of the evolution of the satellite’s east longitude. A typical user interaction with this
program option is as follows:

would you like to create and display graphics (y = yes, n = no)
?y

please input the simulation period (days)
? 8

please input the graphics step size (minutes)
? 30

The following is a plot of the long-term evolution of both the true and mean east longitude for
this example. It illustrates that the secular variation of the east longitude is small and only starts
to “drift” after about 5 days which is the prediction period used in this example.
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Longitude Evolution of Geosynchronous Satellites
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geosync3.m — repositioning a geosynchronous satellite
This MATLAB script determines the impulsive maneuvers required to reposition a
geosynchronous satellite. Repositioning is the process of moving a geosynchronous satellite in
longitude to the east or west relative to some initial location. This orbit modification is
performed by creating an elliptical drift orbit with one impulsive maneuver and then applying a
second impulse that re-establishes a circular geosynchronous orbit at the “target” longitude.

The semimajor axis of the elliptical drift orbit is given by

D 2/3
a, =ay| 1+
360°

where a, is the semimajor axis of the initial geosynchronous circular orbit.

The drift rate D is given by
D =AA/n,

In this equation AA is the longitude change (+ west, — east) relative to the initial location, and
n, is the integer number of drift orbits that the spacecraft travels during the change.

The longitude drift during one drift orbit is given by
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A =w1, -0,

In this equation w, is the inertial rotation rate of the Earth, w, is the orbital rate of the drift orbit
and z, is the orbital period of the drift orbit. The longitude drift is caused by the difference
between the Earth rotation and orbital rates during the drift period.

For a longitude change to the west, the orbital eccentricity of the drift orbit is determined from

a
gy =1-—
ad

The perigee velocity of the drift orbit is given by

v, = /Z_ﬂ M
a's ad
The magnitude of the delta-v that creates the elliptical drift orbit is
AV =V, -V,

where V,. is the local circular velocity of the initial geosynchronous orbit, V,. = \/x/a, . This

delta-v is applied in the direction of orbital motion and creates an elliptical orbit that has a longer
period than the original circular orbit. After the satellite has drifted for n, orbits, a delta-v of

equal magnitude but opposite direction is applied. This delta-v re-circularizes the elliptical drift
orbit and creates a geosynchronous orbit at the new longitude.

For a longitude change to the east, the orbital eccentricity of the drift orbit is determined from

a
g, =—-1
ad

The apogee velocity of the drift orbit is given by

V. - /Z_ﬂ _H
as ad
The magnitude of the delta-v that creates the elliptical drift orbit is

AV =V, -V,

This delta-v is applied opposite to the direction of orbital motion and creates an elliptical orbit
that has a shorter period than the original circular orbit. As before a delta-v of equal magnitude
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but opposite direction is applied to create a geosynchronous orbit at the new user-defined east
longitude.

The following is a typical user interaction with this MATLAB script.
program geosync3
< repositioning maneuvers for gso satellites >
please input the semimajor axis (kilometers)
? 42165
please input the longitude change
(+ west, - east; degrees)

? =30

please input the number of drift orbits
? 10

program geosync3

< repositioning maneuvers for gso satellites >

semimajor axis 42165.000000 kilometers
delta-longitude -30.000000 degrees
number of orbits 10.0

drift period 237.357151 hours

drift orbit characteristics

semimajor axis 41930.423442 kilometers
eccentricity (nd) 0.005594

perigee altitude 35317.709884 kilometers
apogee altitude 35786.863000 kilometers
keplerian period 1424.142906 minutes

total delta-v 17.224908 meters/second

geosync4.m — east-west stationkeeping of geosynchronous satellites

This MATLAB script can be used to determine the impulsive delta-v and drift cycle period
required for east-west stationkeeping of geosynchronous satellites in equatorial orbits. The east-
west stationkeeping requirement is specified by a longitude “deadband” centered about the
nominal east longitude of the satellite.
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A “drift” orbit is established by biasing the initial semimajor axis such that the satellite moves
from this initial condition to the edge of the deadband. After reaching the edge of the deadband
the satellite then drifts toward the other side. When the satellite reaches the other end of the
deadband, a single impulsive maneuver is performed to create an elliptical orbit with an apogee
equal to the original semimajor axis of the drift orbit. Once the satellite reaches this new apogee,
another single maneuver is performed to circularize the satellite’s orbit at this radius.

The following is a typical user interaction with this script.

program geosync4

< east-west stationkeeping of geosynchronous satellites >

initial east longitude and deadband
please input the satellite"s east longitude (degrees)

(0 <= east longitude <= 360)
? 45

please input the total deadband constraint (degrees)
?1

The following is the program output for this example.

program geosync4

< east-west stationkeeping of geosynchronous satellites >

satellite east longitude 45.0000 degrees

total longitude deadband 1.0000 degrees

initial drift rate 0.0575 degrees/day

single maneuver delta-v 0.3262 meters/second
total annual delta-v 1.7113 meters/second/year
drift cycle period 69.6248 days
geosynchronous semimajor axis 42166.2534 kilometers

drift cycle semimajor axis 42170.7272 Kkilometers

delta semimajor axis 4.4738 Kkilometers

After the script has solved the problem it will ask the user if he or she would like to create a
graphics display of the satellite’s orbital motion during the stationkeeping. The following is a
typical user response to this option:

would you like to create and display graphics (y = yes, n = no)
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?y

initial calendar date and time

please input the calendar date

(1 <= month <= 12, 1 <= day <= 31, year = all digits!)
?1,1,1998

please input the universal time

(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60)
? 0,0,0

please input the graphics step size (days)
?1

orbital perturbations

would you like to include solar perturbations (y
?n

yes, n = no)

would you like to include lunar perturbations (y = yes, n = no)
?n

please input the algorithm error tolerance
(a value of 1.0e-8 is recommended)
? le-8

The following is a plot of delta-semimajor axis versus east longitude of the satellite. The delta-

semimajor axis of this plot is the difference between the instantaneous semimajor axis and the
synchronous semimajor axis a, at the nominal east longitude.
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East-west Stationkeeping of Geosynchronous Satellites
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The following is a plot of this example that includes the point-mass gravity perturbation of the
sun and moon.
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In both of these plots the “nominal” east longitude of the satellite is marked with an asterisk.

After the graphics are complete the software will display the following information which is
based on the numerical integration of the satellite’s motion.

program geosync4
< east-west stationkeeping of geosynchronous satellites >

integrated solution

initial calendar date 01-Jan-1998

initial universal time 00:00:00

final calendar date 11-Mar-1998

final universal time 14:59:40

final semimajor axis 42161.7620 kilometers
final eccentricity 0.000041

final east longitude 45.508808 degrees

first delta-v 0.163431 meters/second
second delta-v 0.163422 meters/second
total delta-v 0.326853 meters/second

This information can be used to verify the calculations described in the following section.

Technical Discussion
If g, is positive, the initial east longitude of the satellite is given by

%=4+%Az

If g, is negative, the initial east longitude of the satellite is given by

1
= A —=AA
Jo=4 =3

where AA is the total deadband longitude constraint.

The drift cycle period is determined with the following expression:

P <=

2 FA‘
2
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In this equation w, is the inertial rotation rate of the Earth and 7 is the normalized longitudinal
acceleration given by

2 =18{C,, 8iN2( A, — Ay, )~ 0.25C4, SiN (A, — Ay ) + 7.5C4;SiN3( 4, — Ay )|

In this equation ¢, = J,, (req/aS )n . The dimensional longitude acceleration is /Ta)ez

The spherical harmonic and longitude coefficients of the EGM96 gravity model are determined

from the following expressions:
‘]nm = _\/Cr?m + Sr?m

Ao = L an [Sﬂj
m C

where n is the degree (zonals) and m is the order (tesserals) of these terms.

The delta-v required for each two-impulse Hohmann orbit transfer is given by

The total annual AV required for east-west stationkeeping is given by

AV, = %a) V PD/T[%‘F"ZSJ

e Vsyn =)
D

The initial semimajor axis required for the drifting motion can be determined from

a,=2a,(1+7)

where 7 = i%\/3glsign(gl)Ai and a, is the “reference” synchronous radius at the satellite’s

nominal east longitude A . The equations used to determine this radius are described in the
technical discussion for the geosyncl . m script. The positive sign in the expression for 7
should be used whenever g, is positive.

The initial drift rate of the satellite is determined from

Ay =¥2,/3g,sign (g,) A,
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where the negative sign of this equation is used whenever g, >0 and the positive sign is used
whenever g, <0.
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