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Geosynchronous Orbits 
 
This document describes several MATLAB scripts that are useful for performing mission design 
and analysis for Earth satellites in geosynchronous orbits. Geosynchronous satellites are usually 
in equatorial or low-inclination orbits with an orbital period very close to the time required for 
the Earth to complete one inertial rotation. 
 
The algorithms implemented in these MATLAB scripts are based on the numerical techniques 
described in the following two articles: 
 
“East-west Stationkeeping Requirements of Nearly Synchronous Satellites Due to Earth’s 
Triaxiality and Luni-Solar Effects”, A. Kamel, D. Ekman and R. Tibbitts, Celestial Mechanics 8 
(1973) 129-148. 
 
“On the Orbital Eccentricity Control of Synchronous Satellites”, A. Kamel and C. Wagner, The 
Journal of the Astronautical Sciences, Vol. XXX, No. 1, pp. 61-73, January-March, 1982. 
 
geosync1.m – equilibrium longitudes and radii of geosynchronous satellites 
 
This MATLAB script calculates the equilibrium longitudes and radii of geosynchronous 
satellites based on the EGM96 gravity model of degree (zonals) and order (tesserals) 3. These are 
the four Earth-relative locations where the proper combination of geocentric radius and east 
longitude will minimize the longitudinal drift of satellites located at these points. 
 
The following is the output created by this script. 
 

                          program geosync1 
 
         < equilibrium longitudes, radii and acceleration > 
 
 
location      east longitude         radius          drift acceleration 
                (degrees)         (kilometers)         (degrees/day^2) 
 
   1              75.0602          42166.2409        -2.2287387749e-012 
 
   2             162.0816          42166.2847        7.5875859013e-012 
 
   3             255.0880          42166.2411        2.0642563986e-012 
 
   4             348.5962          42166.2811        4.3719224598e-012 
 
 
drift cycle period at longitude   75.0602 degrees =  2339.2602 days 
 
drift cycle period at longitude  255.0880 degrees =  2883.5951 days 

 
The very small values of drift acceleration confirm that these east longitude locations are indeed 
equilibrium points relative to a triaxial Earth. 
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The fundamental astrodynamic constants of the EGM96 gravity model are: 
 

 3 2

5

 Earth equatorial radius 6378.1363 km

 Earth gravitational constant 398600.4415 km / sec
 Earth inertial rotation rate 7.292115 10 radians/sec
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The spherical harmonic and longitude coefficients of the EGM96 gravity model are determined 
from the following expressions: 

2 2

11 tan

nm nm nm

nm
nm

nm

J C S

S
m C

λ −

= − +

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

 

 
where n is the degree and m is the order of these terms. 
 
The first few unnormalized gravity coefficients are given by 
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The geocentric radius of a synchronous satellite is given by 
 

s sk sa a aδ= +  
 
where ska  is the Keplerian or unperturbed geosynchronous semimajor axis which is given by 
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In this equation µ  is the gravitational constant of the Earth and eω  is the inertial rotation rate of 
the Earth. The “correction” of the Keplerian semimajor axis due to the triaxial shape of the Earth 
and a gravity model of degree and order 3 for a satellite located at an east longitude denoted by 

sλ  is given by the expression 
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The equilibrium longitudes are the points at which the ratio 1 2g g  is equal to zero. The “g” 
factors 1g  and 2g  are determined from the following two equations: 
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The normalized longitudinal acceleration can be determined from the following expression: 
 

( ) ( ) ( ){ }22 22 31 31 33 3318 sin 2 0.25 sin 7.5 sin 3s s sc c cλ λ λ λ λ λ λ= − − − + −��  
 
In this equation ( )n

nm nm eq sc J r a= . The dimensional longitude acceleration is 2
eλω�� . The 

equilibrium longitudes are determined using Brent’s root-finding algorithm. 
 
Equilibrium longitudes with negative 1g  values are stable while those with positive 1g  values are 
unstable. The equilibrium longitudes located at 75.0602° and 255.088° are stable points with 
drift cycle periods given by 

 
23g

πτ =
−

 

 
After this MATLAB script has calculated the characteristics of the equilibrium points, it will ask 
if you would like to create and display a plot of the longitudinal acceleration as a function of east 
longitude of the satellite. This information can be used to graphically verify the calculations 
described in this section. The following is the graphics display for this program option. The 
location of each equilibrium point computed by this script is marked by a small circle. 
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geosync2.m – required osculating semimajor axis 
 
This MATLAB script can be used to estimate the initial osculating semimajor axis required for 
an Earth satellite in geosynchronous orbit. The calculations include perturbations due to the 
point-mass gravity of the Sun and Moon and non-spherical Earth gravity. The user can also elect 
to include the effect of solar radiation pressure in the calculations. The script also allows the user 
to specify the degree and order of the Earth gravity model to use during the solution. 
 
The numerical method implemented in this script uses a combination of one-dimensional root-
finding and numerical integration of the orbital equations of motion to determine the initial 
osculating semimajor axis that will result in a satellite orbit with a geosynchronous period 
subject to the perturbations mentioned above. 
 
The one-dimensional objective function used during the root-finding calculations is 
 

( )
0m mf t λ λ= −  

 
where mλ  is the mean east longitude of the satellite’s subpoint at any time t and 

0mλ  is mean east 
longitude at the initial time. 
 
The true east longitude of the satellite subpoint at any time is given by 
 

( )t gtλ ω θ α= +Ω + −  
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and the mean east longitude is 
( )m gt Mλ ω α= +Ω + −  

 
In these two equations ω  is the argument of perigee, Ω  is the right ascension of the ascending 
node, θ  is the satellite’s true anomaly, M is the mean anomaly and gα  is the Greenwich sidereal 
time at any simulation time t. 
 
The relationship between mean and true anomaly is given by Kepler’s equation for elliptic orbits, 
 

sinM E e E= −  
 
via the following intermediate calculations for eccentric anomaly: 
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The inverse tangent calculation in the last equation is a four quadrant operation. 
 
The orbital period of a geosynchronous satellite in seconds is given by 
 

2

e
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where eω  is the inertial rotation rate of the Earth in radians per second. The algorithm 
numerically integrates the equations of motion for one or more orbital periods, evaluates the 
mean east longitude objective function and uses Brent’s root-finding method to drive the 
difference to a small tolerance. The user can specify how many orbital periods to use during the 
solution process. More orbital periods will provide a better semimajor axis solution at the 
expense of longer computation times. A value between 1 and 5 orbits is recommended. 
 
During the solution the algorithm uses a bracketing interval for the required osculating 
semimajor axis a given by 

0 0100 100a a a− ≤ ≤ +  
 
where 0a  is the initial semimajor axis guess (in kilometers) provided by the user. 
 
The geosync2.m script will begin by prompting the user for the initial calendar date and 
universal time. It will then ask for the degree and order of the gravity model and which 
perturbations to include in the simulation. Finally, the script will prompt the user for the initial 
orbital elements of the satellite. If the initial orbit is not equatorial (orbital inclination > 0), the 
software assumes that the true east longitude input by the user is at the ascending node. 
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The following is a typical interaction with this script. 
 

                  program geosync2  
 
   < geosynchronous osculating semimajor axis >  
 
 
initial calendar date and time 
 
please input the calendar date 
(1 <= month <= 12, 1 <= day <= 31, year = all digits!) 
? 1,1,1998 
 
please input the universal time 
(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60) 
? 0,0,0 
 
 
gravity model inputs  
 
 
please input the degree of the gravity model (zonals) 
(0 <= zonals <= 18) 
? 4 
 
please input the order of the gravity model (tesserals) 
(0 <= tesserals <= 18) 
? 4 
 
 
orbital perturbations  
 
 
would you like to include solar perturbations (y = yes, n = no) 
? y 
 
would you like to include lunar perturbations (y = yes, n = no) 
? y 
 
would you like to include srp perturbations (y = yes, n = no) 
? y 
 
 
solar radiation pressure inputs  
 
 
please input the reflectivity constant (non-dimensional) 
? 1.85 
 
please input the cross-sectional area (square meters) 
? 10 
 
please input the spacecraft mass (kilograms) 
? 2000 
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please input the numerical integration error tolerance 
(a value between 1.0e-8 and 1.0e-10 is recommended) 
? 1e-8 
 
 
 orbital elements menu 
 
   <1> user input 
 
   <2> data file 
 
? 1 
 
 
initial orbital elements  
 
 
please input the semimajor axis (kilometers) 
(semimajor axis > 0) 
? 42160 
 
please input the orbital eccentricity (non-dimensional) 
(0 <= eccentricity < 1) 
? 0 
 
please input the orbital inclination (degrees) 
(0 <= inclination <= 180) 
? 0 
 
please input the satellite's east longitude (degrees) 
(0 <= east longitude <= 360) 
? 45 
 
 
please input the number of orbits to model 
(integer >= 1) 
? 5 

 
The software will display the initial and final east longitude and geodetic latitude. This 
information indicates how well the orbit “closed” at the solution. The following is the program 
output created for this example. 
 
                  program geosync2  
 
   < geosynchronous osculating semimajor axis >  
 
initial calendar date          01-Jan-1998 
initial universal time         00:00:00 
 
initial mean east longitude     45.000000  degrees  
final mean east longitude       45.000000  degrees  
 
initial geodetic latitude        0.000000  degrees  
final geodetic latitude          0.272835  degrees  
 
reflectivity constant            1.850000   
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cross-sectional area            10.000000  sqr meters  
 
spacecraft mass               2000.000000  kilograms  
 
degree of gravity model          4.0  
order of gravity model           4.0  
 
number of orbits modeled         5.0  
 
initial orbital elements 
 
      sma (km)        eccentricity     inclination (deg)    argper (deg) 
 4.2166908088e+004  0.0000000000e+000  0.0000000000e+000  0.0000000000e+000  
 
     raan (deg)     true anomaly (deg)   arglat (deg)       period (min) 
 0.0000000000e+000  1.4544413882e+002  1.4544413882e+002  1.4362080817e+003 

 
After the script solves the problem it will ask the user if he or she would like to create a graphics 
display of the evolution of the satellite’s east longitude. A typical user interaction with this 
program option is as follows: 
 

would you like to create and display graphics (y = yes, n = no) 
? y 
 
please input the simulation period (days) 
? 8 
 
please input the graphics step size (minutes) 
? 30 

 
The following is a plot of the long-term evolution of both the true and mean east longitude for 
this example. It illustrates that the secular variation of the east longitude is small and only starts 
to “drift” after about 5 days which is the prediction period used in this example. 
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geosync3.m – repositioning a geosynchronous satellite 
 
This MATLAB script determines the impulsive maneuvers required to reposition a 
geosynchronous satellite. Repositioning is the process of moving a geosynchronous satellite in 
longitude to the east or west relative to some initial location. This orbit modification is 
performed by creating an elliptical drift orbit with one impulsive maneuver and then applying a 
second impulse that re-establishes a circular geosynchronous orbit at the “target” longitude. 
 
The semimajor axis of the elliptical drift orbit is given by 
 

2 3

1
360d s

Da a ⎛ ⎞= +⎜ ⎟°⎝ ⎠
 

 
where sa  is the semimajor axis of the initial geosynchronous circular orbit. 
 
The drift rate D is given by  

dD nλ= ∆  
 
In this equation λ∆  is the longitude change (+ west, −  east) relative to the initial location, and 

dn  is the integer number of drift orbits that the spacecraft travels during the change. 
 
The longitude drift during one drift orbit is given by 
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e d s dλ ω τ ω τ∆ = −  
 
In this equation eω  is the inertial rotation rate of the Earth, sω  is the orbital rate of the drift orbit 
and dτ  is the orbital period of the drift orbit. The longitude drift is caused by the difference 
between the Earth rotation and orbital rates during the drift period. 
 
For a longitude change to the west, the orbital eccentricity of the drift orbit is determined from 
 

1 s
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The perigee velocity of the drift orbit is given by 
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The magnitude of the delta-v that creates the elliptical drift orbit is 
 

p lcV V V∆ = −  
 
where lcV  is the local circular velocity of the initial geosynchronous orbit, lc sV aµ= . This 
delta-v is applied in the direction of orbital motion and creates an elliptical orbit that has a longer 
period than the original circular orbit. After the satellite has drifted for dn  orbits, a delta-v of 
equal magnitude but opposite direction is applied. This delta-v re-circularizes the elliptical drift 
orbit and creates a geosynchronous orbit at the new longitude. 
 
For a longitude change to the east, the orbital eccentricity of the drift orbit is determined from 
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The apogee velocity of the drift orbit is given by 
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a

s d

V
a a
µ µ

= −  

 
The magnitude of the delta-v that creates the elliptical drift orbit is 
 

lc aV V V∆ = −  
 
This delta-v is applied opposite to the direction of orbital motion and creates an elliptical orbit 
that has a shorter period than the original circular orbit. As before a delta-v of equal magnitude 
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but opposite direction is applied to create a geosynchronous orbit at the new user-defined east 
longitude. 
 
The following is a typical user interaction with this MATLAB script. 
 

               program geosync3  
 
< repositioning maneuvers for gso satellites >  
 
 
please input the semimajor axis (kilometers) 
? 42165 
 
please input the longitude change 
(+ west, - east; degrees) 
? -30 
 
please input the number of drift orbits 
? 10 
 
               program geosync3  
 
   < repositioning maneuvers for gso satellites >  
 
 
semimajor axis           42165.000000  kilometers  
 
delta-longitude            -30.000000  degrees  
 
number of orbits           10.0   
 
drift period               237.357151  hours  
 
 
drift orbit characteristics  
 
semimajor axis           41930.423442  kilometers  
 
eccentricity (nd)            0.005594  
 
perigee altitude         35317.709884  kilometers  
 
apogee altitude          35786.863000  kilometers  
 
keplerian period          1424.142906  minutes  
 
total delta-v               17.224908  meters/second 

 
geosync4.m – east-west stationkeeping of geosynchronous satellites 
 
This MATLAB script can be used to determine the impulsive delta-v and drift cycle period 
required for east-west stationkeeping of geosynchronous satellites in equatorial orbits. The east-
west stationkeeping requirement is specified by a longitude “deadband” centered about the 
nominal east longitude of the satellite. 
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A “drift” orbit is established by biasing the initial semimajor axis such that the satellite moves 
from this initial condition to the edge of the deadband. After reaching the edge of the deadband 
the satellite then drifts toward the other side. When the satellite reaches the other end of the 
deadband, a single impulsive maneuver is performed to create an elliptical orbit with an apogee 
equal to the original semimajor axis of the drift orbit. Once the satellite reaches this new apogee, 
another single maneuver is performed to circularize the satellite’s orbit at this radius. 
 
The following is a typical user interaction with this script. 
 

                    program geosync4 
 
< east-west stationkeeping of geosynchronous satellites > 
 
 
initial east longitude and deadband 
 
please input the satellite's east longitude (degrees) 
(0 <= east longitude <= 360) 
? 45 
 
 
please input the total deadband constraint (degrees) 
? 1 

 
The following is the program output for this example. 
 

                    program geosync4 
 
< east-west stationkeeping of geosynchronous satellites > 
 
satellite east longitude            45.0000 degrees 
 
total longitude deadband             1.0000 degrees 
 
initial drift rate                   0.0575 degrees/day 
 
single maneuver delta-v              0.3262 meters/second 
 
total annual delta-v                 1.7113 meters/second/year 
 
drift cycle period                  69.6248 days 
 
 
geosynchronous semimajor axis    42166.2534 kilometers 
drift cycle semimajor axis       42170.7272 kilometers 
delta semimajor axis                 4.4738 kilometers 

 
After the script has solved the problem it will ask the user if he or she would like to create a 
graphics display of the satellite’s orbital motion during the stationkeeping. The following is a 
typical user response to this option: 
 

would you like to create and display graphics (y = yes, n = no) 
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? y 
 
initial calendar date and time 
 
please input the calendar date 
(1 <= month <= 12, 1 <= day <= 31, year = all digits!) 
? 1,1,1998 
 
please input the universal time 
(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60) 
? 0,0,0 
 
please input the graphics step size (days) 
? 1 
 
orbital perturbations  
 
would you like to include solar perturbations (y = yes, n = no) 
? n 
 
would you like to include lunar perturbations (y = yes, n = no) 
? n 
 
please input the algorithm error tolerance 
(a value of 1.0e-8 is recommended) 
? 1e-8 

 
The following is a plot of delta-semimajor axis versus east longitude of the satellite. The delta-
semimajor axis of this plot is the difference between the instantaneous semimajor axis and the 
synchronous semimajor axis sa  at the nominal east longitude. 
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The following is a plot of this example that includes the point-mass gravity perturbation of the 
sun and moon. 
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In both of these plots the “nominal” east longitude of the satellite is marked with an asterisk. 
 
After the graphics are complete the software will display the following information which is 
based on the numerical integration of the satellite’s motion. 
 

                    program geosync4 
 
< east-west stationkeeping of geosynchronous satellites > 
 
integrated solution 
 
initial calendar date       01-Jan-1998 
initial universal time      00:00:00 
 
final calendar date         11-Mar-1998 
final universal time        14:59:40 
 
final semimajor axis      42161.7620 kilometers 
 
final eccentricity          0.000041  
 
final east longitude       45.508808 degrees 
 
first delta-v               0.163431 meters/second 
 
second delta-v              0.163422 meters/second 
 
total delta-v               0.326853 meters/second 

 
This information can be used to verify the calculations described in the following section. 
 
Technical Discussion 
 
If 1g  is positive, the initial east longitude of the satellite is given by 
 

 0
1
2sλ λ λ= + ∆  

 
If 1g  is negative, the initial east longitude of the satellite is given by 
 

 0
1
2sλ λ λ= − ∆  

 
where λ∆  is the total deadband longitude constraint. 
 
The drift cycle period is determined with the following expression: 
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In this equation eω  is the inertial rotation rate of the Earth and λ��  is the normalized longitudinal 
acceleration given by 
 

( ) ( ) ( ){ }22 22 31 31 33 3318 sin 2 0.25 sin 7.5 sin 3s s sc c cλ λ λ λ λ λ λ= − − − + −��  
 
In this equation ( )n

nm nm eq sc J r a= . The dimensional longitude acceleration is 2
eλω�� . 

 
The spherical harmonic and longitude coefficients of the EGM96 gravity model are determined 
from the following expressions: 
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where n is the degree (zonals) and m is the order (tesserals) of these terms. 
 
The delta-v required for each two-impulse Hohmann orbit transfer is given by 
 

1
3D e syn DV V Pω λ∆ = ��  

 
The total annual V∆  required for east-west stationkeeping is given by 
 

1 365.25
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The initial semimajor axis required for the drifting motion can be determined from 
 

( )0 1sa a η= +  

where ( )1 1
4 3
3

g sign gη λ= ± ∆  and sa  is the “reference” synchronous radius at the satellite’s 

nominal east longitude sλ . The equations used to determine this radius are described in the 
technical discussion for the geosync1.m script. The positive sign in the expression for η  
should be used whenever 1g  is positive. 
 
The initial drift rate of the satellite is determined from 
 

( )0 1 1 02 3g sign gλ λ∆ = ∆� ∓  
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where the negative sign of this equation is used whenever 1 0g >  and the positive sign is used 
whenever 1 0g < . 


