Orbital Mechanics with MATLAB

The Hohmann Orbit Transfer

The coplanar circular orbit-to-circular orbit transfer was discovered by the German engineer Walter
Hohmann in 1925 and described in his classic report, The Attainability of Celestial Bodies. The transfer
consists of a velocity impulse on an initial circular orbit, in the direction of motion and collinear with the
velocity vector, which propels the space vehicle into an elliptical transfer orbit. At a transfer angle of
180 degrees from the first impulse, a second velocity impulse or AV, also collinear and in the direction
of motion, places the vehicle into a final circular orbit at the desired final altitude. The impulsive AV
assumption means that the velocity, but not the position, of the vehicle is changed instantaneously. This
is equivalent to a rocket engine with infinite thrust magnitude. The Hohmann formulation is the ideal
and minimum energy solution to this type of time-free orbit transfer problem.

Coplanar Equations

For the coplanar Hohmann transfer both velocity impulses are confined to the orbital planes of the initial
and final orbits. For a Hohmann transfer from a lower altitude orbit to a higher altitude circular orbit,
the first impulse creates an elliptical transfer orbit with a perigee altitude equal to the altitude of the
initial circular orbit and an apogee altitude equal to the altitude of the final orbit. The second impulse
circularizes the transfer orbit at apogee. Both impulses are posigrade which means that they are in the
direction of orbital motion.

We begin by defining three normalized radii as follows:
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where r, is the geocentric radius of the initial circular park orbit and r, is the radius of the final circular
mission orbit. The relationship between radius and initial orbit altitude h, and the final orbit altitude h,
is as follows:

r=r,+h
ro=r,+h,

where r, is the radius of the Earth.

The magnitude of the first impulse is

AV, =V, 1+ R? - 2R,

and is simply the difference between the speed on the initial orbit and the perigee speed of the transfer
orbit. The scalar magnitude of the second impulse is

AV, =V, \[R? + RZR? —2R?R,
which is the difference between the speed on the final orbit and the apogee speed of the transfer ellipse.
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In each of these AV equations V,, is called the local circular velocity. It can be determined from

Vlc :\/Z
f

and represents the scalar speed in the initial orbit. In these equations . is the gravitational constant of
the central body. The transfer time from the first impulse to the second is equal to one half the orbital
period of the transfer ellipse

a3
T=7,|—
7

where a is the semimajor axis of the transfer orbit and is equal to (ri +1, )/2 . The orbital eccentricity of
the transfer ellipse is

max (1, r, )—min(r,r; )

e =

The following diagram illustrates the geometry of the coplanar Hohmann transfer.

transfer orbit

initial orbit
AV,

final orbit

Non-coplanar Equations

The non-coplanar Hohmann transfer involves orbital transfer between two circular orbits which have
different orbital inclinations. For this problem the propulsive energy is minimized if we optimally
partition the total orbital inclination change between the first and second impulses.
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The scalar magnitude of the first impulse is

AV, =V, \[1+ R? — 2R, cos 6,

where 6, is the plane change associated with the first impulse. The magnitude of the second impulse is

AV, =V.\[R? + RZR? — 2R?R, c0s 6,

where 6, is the plane change associated with the second impulse. These two equations are different
forms of the law of cosines.

The total AV required for the maneuver is the sum of the two impulses as follows
AV = AV, + AV,
The relationship between the plane change angles is
6,=0,+0,
where 6, is the total plane change angle between the initial and final orbits.
Optimizing the non-coplanar Hohmann transfer involves allocating the total plane change angle between
the two maneuvers such that the total AV required for the mission is minimized. We can determine this

answer by solving for the root of a derivative.

The partial derivative of the total AV with respect to the first plane change angle is given by:

OAV R, siné, _ RJRy(sing, cos, —cosd;sin g, )
00, \J1+R?-2R.cosf, |R:+RIRZ—2RIR,c08(6,—0,)

If we determine the value of 8, which makes this derivative zero, we have found the optimum plane
change required at the first impulse. Once &, is calculated we can determine &, from the total plane
change angle relationship and the velocity impulses from the previous equations.

Numerical Solution

This numerical algorithm has been implemented in an interactive MATLAB script called hohmann . m.
This script prompts the user for the initial and final altitudes in kilometers and the initial and final orbital
inclinations in degrees. The software then calls the Brent root-finding algorithm to solve the partial
derivative equation described above.

The call to the Brent root-finding algorithm is as follows:

[xroot, froot] = brent ('hohmfunc', 0, dinc, rtol):;
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where hohmfunc is the objective function for this problem. Since we know that the optimum first plane
change angle is somewhere between 0 and the total plane change angle dinc, we pass these as the
bounds of the root. In the parameter list rto1l is the user-defined root-finding convergence tolerance.

The following is a typical orbit transfer from a low altitude Earth orbit (LEO) at an altitude of 185.2
kilometers and an orbital inclination of 28.5 degrees to a geosynchronous Earth orbit (GSO) at an
altitude of 35786.36 kilometers and 0 degrees inclination.

The following is a AV diagram for the first maneuver of this orbit transfer example. In this view we are
looking along the line of nodes which is the mutual intersection of the park and transfer orbit planes with
the equatorial plane.

AV

28.5°

equator

In this diagram V; is the speed on the initial park orbit, V| is the perigee speed of the elliptic transfer

orbit, and AV is the impulse required for the first maneuver. The inclinations of the park and transfer
orbit are also labeled. From this geometry and the law of cosines, the required AV is given by

AV = \Nz +V; —2V,V, cos Al

where Ai is the inclination difference or plane change between the park and transfer orbits.
User interaction with the script

The following is a typical user interaction with this MATLAB script. User inputs are in bold font.

Hohmann Orbit Transfer Analysis

please input the initial altitude kilometers
? 300

please input the final altitude kilometers
? 35786.2

please input the initial orbital inclination degrees
(0 <= inclination <= 180)
? 28.5

please input the final orbital inclination degrees
(0 <= inclination <= 180)
20
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The following is the script solution for this example.

Hohmann Orbit Transfer Analysis

initial orbit altitude 300.0000 kilometers
initial orbit radius 6678.1363 kilometers
initial orbit inclination 28.5000 degrees
initial orbit velocity 7725.7606 meters/second
final orbit altitude 35786.2000 kilometers
final orbit radius 42164.3363 kilometers
final orbit inclination 0.0000 degrees

final orbit velocity 3074.6540 meters/second
first inclination change 2.2002 degrees
second inclination change 26.2998 degrees

total inclination change 28.5000 degrees

first delta-v 2449.4551 meters/second
second delta-v 1781.8532 meters/second
total delta-v 4231.3083 meters/second
transfer orbit semimajor axis 24421.2363 kilometers
transfer orbit eccentricity 0.72654389

transfer orbit inclination 26.2998 degrees
transfer orbit perigee velocity 10151.4962 meters/second
transfer orbit apogee velocity 1607.8298 meters/second
transfer orbit coast time 18990.3276 seconds

316.5055 minutes
5.2751 hours

This MATLAB script is valid for Hohmann transfers from a high initial circular orbit to a lower final
orbit. It also handles the case of transfer to a mission orbit with higher orbital inclination.
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The hohmann script will also create a graphics display of the initial, transfer and final orbits. The
following is the graphics display for this example. The initial orbit trace is red, the transfer orbit is blue
and the final mission orbit is green. The dimensions are Earth radii (ER) and the plot is labeled with an

ECI coordinate system where green is the x-axis, red is the y-axis and blue is the z-axis. The location of
each impulse is marked with a small blue circle.

Hohmann Transfer: Initial, Transfer and Final Orbits

Z coordinate (ER)

X coordinate (ER) Y coordinate (ER)

The interactive graphic features of MATLAB allow the user to rotate and zoom the display. These
capabilities allow the user to interactively find the best viewpoint as well as verify basic three-
dimensional geometry of the orbital transfer.

The hohmann MATLAB script will also create color a Postscript disk file of this graphic image. This
image includes a TIFF preview and is created with MATLAB code similar to

print -depsc -tiff -r300 hohmannl.eps

Primer Vector Analysis

This section summarizes the primer vector analysis included with this MATLAB script. The term
primer vector was invented by Derek F. Lawden and represents the adjoint vector for velocity. A
technical discussion about primer theory can be found in Lawden’s classic text, Optimal Trajectories for
Space Navigation, Butterworths, London, 1963. Another excellent resource is “Primer Vector Theory
and Applications”, Donald J. Jezewski, NASA TR R-454, November 1975, along with “Optimal, Multi-
burn, Space Trajectories”, also by Jezewski.

As shown by Lawden, the following four necessary conditions must be satisfied in order for an
impulsive orbital transfer to be locally optimal:

(1) the primer vector and its first derivative are everywhere continuous

(2) whenever a velocity impulse occurs, the primer is a unit vector aligned with the impulse and
has unit magnitude (p=p =0, and |p| =1)
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(3) the magnitude of the primer vector may not exceed unity on a coasting arc (|p||= p<1)

(4) at all interior impulses (not at the initial or final times) psp=0; therefore, d||p||/dt =0 at the
intermediate impulses

Furthermore, the scalar magnitudes of the primer vector derivative at the initial and final impulses
provide information about how to improve the nominal transfer trajectory by changing the endpoint
times and/or moving the impulse times. These four cases for non-zero slopes are summarized as
follows;

e If p,>0and p, <0— perform an initial coast before the first impulse and add a final coast
after the second impulse

e If p,>0and p, >0— perform an initial coast before the first impulse and move the second
impulse to a later time

e If p,<0and p, <0— perform the first impulse at an earlier time and add a final coast after the
second impulse

e If p,<0and p, >0— perform the first impulse at an earlier time and move the second
impulse to a later time

The primer vector analysis of a two impulse orbital transfer involves the following steps.

First partition the two-body state transition matrix as follows:

or or

6_ro Wo T, @ o, @,
Q)(t’tO)_ 6\/ aV _|:cD21 CDZZ}_|:(DVF (DW:|

o, v,

where
oxlox, oxloy, oxloz,

or
Dy {a_r}: oylox, oyloy, oylaz,
°4 loziex, ozloy, ozlaz,
and so forth.

The value of the primer vector at any time t along a two body trajectory is given by
p(t) =0, (t1to)po + @, (Lto)po
and the value of the primer vector derivative is

p(t) = (D21 (t’tO) pO + (D22 (t'tO)pO
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et

The primer vector boundary conditions at the initial and final impulses are as follows:

which can also be expressed as

AV,
|0(to)=|oo=|AV°| p(t)=p; =
0

These two conditions illustrate that at the locations of velocity impulses, the primer vector is a unit
vector in the direction of the corresponding impulse.

The value of the primer vector derivative at the initial time is
B(t) =Po = P33 (et ){P 1 — Py (81 )Po}
provided the ®,, sub-matrix is non-singular.

The scalar magnitude of the derivative of the primer vector can be determined from

dlp]_d
dt dt

2_Pp

By =

The following two graphic images illustrate the behavior of the magnitudes of the primer vector and its
derivative for the example given earlier. The location of each impulse is marked with a small red circle.

Primer Vector Analysis of the Hohmann Transfer
105 ,

primer vector magnitude
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«10¢  Primer Vector Analysis of the Hohmann Transfer
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From the properties of the primer vector and its derivative, we can see that this orbit transfer is optimal.

The hohmann MATLAB script will also create color a Postscript disk file of these graphic images. This
image includes a TIFF preview and is created with MATLAB source code similar to

print -depsc -tiff -r300 primer.eps
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